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I. Introduction

Many economic and causal parameters depend on lifetime outcomes, such as income,
earnings, or consumption. However, survey and administrative data typically cover only
a limited segment of individuals’ working lives, posing significant challenges across
fields such as household economics, education, and labor. Specifically, this data lim-
itation hinders the separation of transitory and permanent shocks to consumption and
savings (Jappelli and Pistaferri, 2010), and introduces bias into estimates of long-run ed-
ucational returns (Heckman et al., 2006) and intergenerational income mobility (Solon,
1992). This paper addresses the challenge of unobserved lifetime income in estimating
the intergenerational elasticity (IGE) by establishing its nonparametric identification and
developing a consistent, locally robust estimator.

The intergenerational elasticity has traditionally served as the primary measure of in-
come persistence across generations (Nybom and Stuhler, 2017). It is formally defined
as the slope coefficient from a regression of a child’s permanent income on that of the
parent. However, due to data constraints, researchers commonly rely on proxies such
as annual income averages, which introduces measurement error on both sides of the
regression. While bias typically stems from errors in the independent variable, the IGE
context presents two further complications. First, errors in the dependent variable may
bias estimates if income growth varies by parental background, as documented for chil-
dren from affluent families, who tend to experience steeper growth (Halvorsen et al.,
2022). Second, life-cycle bias stems from observing fathers at older, more stable ages
than sons, whose early-career income is a noisier proxy for permanent income (Haider
and Solon, 2006).

Recent literature has made substantial progress in refining IGE estimates by addressing
specific sources of bias, either by improving proxies for parental (Mazumder, 2016) or
child income (Mello et al., 2024). Nevertheless, questions remain about the robustness
of existing estimates and the reliability of comparisons across time and place (Mogstad
and Torsvik, 2023). We formalize these concerns by showing that the magnitude of each
source of bias depends on research design, income dynamics, and sampling rules. As a
result, proxy-based estimators converge to context-specific limits, rather than a common
population IGE, compromising the reliability and comparability of results across studies.
This underscores the need to move beyond proxy refinement and focus on identification,
which addresses all sources of bias and enables reliable and comparable estimation of
the IGE across studies.

This paper shows nonparametric identification of the intergenerational elasticity using
partially observed income data and family characteristics. We define permanent income
as lifetime average log income, consistent with its interpretation as the permanent com-
ponent of log income (Solon, 1992; Mazumder, 2005). Under this definition, we show
that the IGE can be recovered through a moment function that depends on nuisance pa-
rameters, including the conditional expectation of income of both parent and child, as
well as the conditional autocovariance of parental annual income, given family charac-
teristics and income observability. Our identification result is nonparametric, relying on
a theoretically grounded definition of permanent income rather than imposing functional
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form assumptions on the relationship between permanent and annual income, or between
annual income and observable characteristics.

Identification relies on standard missing-at-random (MAR) and orthogonality assump-
tions. Empirical evidence from the Panel Study of Income Dynamics (PSID), the dataset
used for the application, suggests that the MAR assumption is plausible when relevant
characteristics are included (Fitzgerald, 2011; Schoeni and Wiemers, 2015). To assess
the orthogonality conditions, we construct and implement two locally robust tests, both
of which are not rejected in the PSID, supporting the plausibility of the assumptions. We
also provide evidence that the IGE estimates remain robust when permanent income is
defined alternatively as the log of average lifetime income. Taken together, these find-
ings provide empirical support for the credibility of the identifying assumptions and the
robustness to the permanent income definition.

We develop a consistent and locally robust two-step estimator of the IGE, enabling
reliable and comparable measurement of income persistence across studies, time, and
place. In the first step, we estimate nuisance parameters using machine learning (ML) to
flexibly capture the heterogeneous and nonlinear dynamics of income while reducing the
risk of misspecification. To avoid overfitting and own-observation bias, we implement
cross-fitting. In the second step, the IGE is computed using the first-stage estimates
via a Neyman-orthogonal moment, which we construct to guarantee local robustness,
meaning that small errors in the first stage have a negligible effect on the final estimate.
This property is especially relevant in settings where ML is applied in the first stage, to
mitigate regularization and model selection bias introduced by nonparametric methods
(Chernozhukov et al., 2022). We establish the asymptotic normality for the proposed
estimator and provide locally robust hypothesis tests for two of the identifying assump-
tions. Our simulations suggest the estimator exhibits sound finite-sample performance,
with negligible bias that vanishes as sample size increases and coverage rates close to
nominal levels.

Applying our method to the United States using the core PSID sample yields an IGE
estimate of 0.69. This aligns with previous evidence based on long-term parental in-
come averages, which suggests that the U.S. IGE is likely above 0.6 (Mazumder, 2016).
In contrast, two alternative estimators using income proxies produce considerably lower
estimates of 0.38 and 0.51. A naive machine learning plug-in estimator, which relies
on the standard identifying equation rather than the Neyman-orthogonal adjustment, de-
livers a lower estimate of 0.60. Our findings highlight the importance of identification,
combined with local robustness, for studying income mobility through the lens of the
intergenerational elasticity.

The contribution of this paper is two-fold. Methodologically, we develop a new frame-
work that reconceptualizes IGE estimation as a missing data problem, shifting focus from
reducing attenuation bias to identification. Empirically, we deliver a consistent, asymp-
totically normal estimator that enables meaningful comparisons of intergenerational in-
come persistence across time and place. To facilitate implementation and reproducibility,
a user-friendly R package, LRIGE, is currently under development.

The remainder of the paper is as follows: Section II formalizes that proxy-based esti-
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mators converge to context-specific limits, compromising the reliability and comparabil-
ity of results across studies. Section III shows nonparametric identification of the IGE,
provides a locally robust estimator, establishes asymptotic normality for the proposed es-
timator, and provides hypothesis tests for two of the identifying assumptions. Section IV
reports simulation results, and Section V presents an empirical application of our estima-
tor, measuring the IGE in the United States. Section VI concludes. Proofs are provided
in the Appendix.

II. Biases and Comparability in Intergenerational Elasticity Estimates

Our object of interest is the intergenerational elasticity of income, which captures the
degree to which income differences between parents are associated with income differ-
ences among their children. Formally, the IGE is defined by the regression

YP
c = α0 + β0YP

f + u, E
[
u
(
1,YP

f

)′]
= 0,(1)

where YP
f and YP

c denote the permanent component of log annual income for fathers
and children (Solon, 1992), u is an idiosyncratic error term uncorrelated with parental
income, and β0 is the intergenerational elasticity. Henceforth, we will refer to YP as
permanent income.

According to equation (1), the closed form solution for the IGE is given by

β0 =
E

[(
YP

c − E
[
YP

c

]) (
YP

f − E
[
YP

f

])]
E

[(
YP

f − E
[
YP

f

])2
] .(2)

However, because permanent income data is rarely available in practice, researchers typ-
ically rely on short-term income snapshots (Mazumder, 2005), using either a single-year
observation or a multi-year average as a proxy for permanent income. This naturally
raises the question of what exactly the available estimators in the literature measure, and
whether their estimates are comparable across settings.

To address this, we adopt the strategy that Mogstad and Torgovitsky (2024) refer to
as “reverse engineering”. In the context of instrumental variables (IV), this approach
begins with a practical problem: when treatment effects exhibit unobserved heterogeneity
(UHTE), the classical linear IV model is misspecified. Yet a linear IV estimate can still be
computed. The reverse engineering framework then seeks to determine what, if anything,
this estimator measures. Thus, it proceeds by starting with the tool, and it attempts to
reverse engineer an interpretation for it under suitable assumptions.

The idea of reverse engineering has already been applied in the intergenerational mo-
bility literature to formally characterize the behavior of estimators based on proxy mea-
sures of permanent income (Solon, 1992; Nybom and Stuhler, 2016). Specifically, it has
been used to establish the probability limit of such estimators, thereby identifying the
distinct sources of bias introduced by relying on imperfect proxies.
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To set the grounds for our analysis, we follow the literature by first characterizing the
probability limit of the estimator based on income proxies. We begin by defining the ob-
served data typically available to researchers. Most empirical studies utilize longitudinal
datasets such as the Panel Study of Income Dynamics (PSID), which contain only partial
income trajectories for parents and children, along with additional individual and family
characteristics. Formally, the observed data consist of an independent and identically
distributed (i.i.d.) sample of W =

(
Yc ⊙ Dc,Y f ⊙ D f , Dc, D f , X

)
, where Yc and Y f are

T -dimensional random vectors containing information on (log) annual child and parental
income, respectively, the vectors Dc and D f are T -dimensional indicator vectors, with
elements Dgt = 1 if Ygt is observed and Dgt = 0 otherwise, for g ∈ {c, f }, ⊙ denotes
the element-wise product, so that Yg ⊙ Dg contains the observed entries of Yg and zeros
elsewhere, and the vector X contains observed characteristics for both generations.

The standard approach to estimate the IGE, which we label the mid-life income (MI)
estimator, consists of a two-step approach. First, it proxies permanent income as the
average of T f and Tc (log) annual income observations around mid-life for the fathers
and the children, respectively. In the second step, it regresses the child’s proxy measure
on the parent’s.

Formally, the MI estimand is the defined as the slope coefficient in the projection:

ỸP
c = α

MI + βMIỸP
f + uMI , E

[
uMI

(
1, ỸP

f

)′]
= 0,

ỸP
g B

1
Tg

∑
j∈Mg

Yg jDg j, g ∈ {c, f },

where Dg j = 1 when Yg j is observed and zero otherwise, Mg is a set of pre-defined
mid-life years for generation g, and Tg B

∑
j∈Mg Dg j is the number of years used for the

average.
To establish the probability limit of the MI estimator using the reverse engineering

approach (Mogstad and Torgovitsky, 2024), we now impose standard assumptions used
in the literature. A comprehensive discussion of the MI estimator’s definition, theoretical
underpinnings, assumptions, and sources of bias can be found in Appendix A2.

Assumption 1-MI. (Annual Income Process) The relationship between annual and per-
manent income is governed by

Ygt = λtYP
g + vgt, E

[
vgtYP

g

]
= 0, g ∈ {c, f }, t = 1, ...,T,

λt = 1,∀t ∈ Mg, g ∈ {c, f }.

where λt captures that the persistence of permanent income may vary over the life-cycle
period, and vgt is an age shock.

Assumption 2-MI. (Conditional Mean Independence) The following conditional mean
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restrictions hold

E
[
vctv f j

∣∣∣Dct,D f j
]
= 0, t ∈ Mc, j ∈ M f ,

E
[
v f jYP

c

∣∣∣D f j
]
= 0, j ∈ M f ,

E
[
v f tYP

f |D f t,D f j
]
= 0, t j ∈ M f ,

E
[
vg j|Dg j

]
= 0, g ∈ {c, f }, j ∈ M j.

The inconsistency of the MI estimator is well-documented in the literature. Proposition
1 restates this result to make explicit the four sources of bias that will be central to our
discussion. While the main characterization of these biases is familiar, the proposition
extends prior work by incorporating missing income data. Appendix A4 shows that
Proposition 1 reduces to the results of Solon (1992) and coincides with Nybom and
Stuhler (2016) under certain assumption variants. In addition, the proposition formalizes
the empirical observation that IGE estimates are sensitive to sample inclusion criteria
and missing income, by demonstrating how the observation probabilities p f

(
t, j ∈ M f

)
and pc (t ∈ Mc) shape the asymptotic bias.

Proposition 1. Under Assumptions 1-MI and 2-MI, the probability limit of the MI estimator is
given by:

β̂MI
n

p
→

β0E
[(

YP
f − E

[
YP

f

])2
]
+

(c)︷                                    ︸︸                                    ︷
1
Tc

∑
t

E
[
YP

f vct

∣∣∣Dct = 1, t ∈ Mc

]
×

(d)︷        ︸︸        ︷
pc (t ∈ Mc)

E
[(

YP
f − E

[
YP

f

])2
]
+

1
T 2

f

∑
t

∑
j

E
[
v f tv f j

∣∣∣D f t = 1,D f j = 1, {t, j} ∈ M f

]
︸                                                             ︷︷                                                             ︸

(a)

× p f

(
{t, j} ∈ M f

)︸              ︷︷              ︸
(b)

,

(3)

where vct and v f t are children and parental age shocks to (log) annual income as defined in As-
sumption 1-MI, and pc (t ∈ Mc) and p f

(
{t, j} ∈ M f

)
denote the probabilities of observing child

income at mid-life year t, and parent income at mid-life years in years t and j, respectively.

Proposition 1 presents a formal statement of the biases already familiar from prior
work, including (a) the measurement error and life-cycle bias of parental income (Solon,
1992; Mazumder, 2005), (b) the sensitivity of the IGE estimates to low, zero, and missing
parental income observations (Couch and Lillard, 1998; Dahl and DeLeire, 2008; Chetty
et al., 2014; Nybom and Stuhler, 2016), (c) the measurement error and life-cycle bias
of children’s income (Nybom and Stuhler, 2016), and (d) the sensitivity to the number
of years and the selected year(s) to measure children’s income (Mello et al., 2024). For
ease of exposition, the proposition is stated under a classical errors-in-variables formu-
lation, so that the age-shocks are treated as capturing both transitory fluctuations and the
systematic life-cycle bias. In Appendix A4 (equation A28) we relax this restriction and
allow for a generalized errors-in-variables structure that explicitly separates the life-cycle
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component. A brief discussion of each component that hinders the consistent estimation
of the IGE by β̂MI

n can be found in Appendix A2.
Identifying the distinct biases introduced by imperfect proxies has enabled the litera-

ture to refine estimation procedures by addressing specific sources of bias. For exam-
ple, Mazumder (2005) addresses the measurement error and life-cycle bias of parental
income (component (a) in equation (3)) by using long-term parental income averages
centered at age 40. More recently, Mello et al. (2024) address life-cycle bias from using
snapshots of children’s income, captured by terms (c) and (d), by predicting children’s
income profiles from standard observables such as age and education, while allowing
income growth to be steeper for children from more affluent families.

Despite these advances, questions remain about the robustness of existing estimates
and the reliability of comparisons across time and place (Mogstad and Torsvik, 2023;
Mello et al., 2024). While the literature has rightly emphasized the sensitivity of IGE
estimates to the biases in Proposition 1, a more fundamental issue is that these biases
systematically alter the target parameter itself. Crucially, the magnitude of each bias
component varies with income dynamics, research design, and sampling rules. Due
to heterogeneity in institutional contexts and study design choices, these factors differ
across datasets, regions, countries, and time, rendering IGE estimates non-comparable.
The following corollary makes this dependence explicit by formalizing that the target
parameter is inherently dependent on the research design and the underlying income
dynamics.

Corollary 1.1 (Context-Dependence of the MI Estimand). Under the assumptions of
Proposition 1, the probability limit of the Mid-Life Income estimator is a context-dependent
parameter

β̂MI
n

p
→ βMI(η) B β0 · ∆(η),(4)

where the distortion factor ∆(η) , 1 captures departure from consistency. Formally, the
research-design/context vector

η B
(
M f ,Mc,T f ,Tc, p,Σ

)
,

collects all research-design choices and structural features of the income process: Mg
and Tg are the set of pre-defined mid-life years, and the number of years used for
the average for generation g ∈ {c, f }, respectively; p = (p f , pc) captures observa-
tion/availability and selection rules; and Σ summarizes how permanent income and tran-
sitory fluctuations in parents’ and children’s earnings

(
YP

f , v f t, vct
)

vary and relate to
each other. Equation (3) provides the explicit form of ∆(η).

Corollary 1.1 rationalizes concerns raised in the literature about the robustness of IGE
estimates and the reliability of comparisons across studies, time, and place. Specifically,
it shows that reliance on income proxies introduces systematic distortions, preventing
identification of the true intergenerational elasticity. These distortions limit the reliability



8

and comparability of resulting estimates across studies, as each converges to its own
context-specific value βMI(η). A compelling example is the wide variation in recent
U.S. estimates, which range from 0.35 to 0.65 (Mello et al., 2024). Corollary 1.1 makes
explicit the potential drivers of this pattern. Even when components such as (a) and (c) in
equation (3) are held constant, differences in the definition of mid-life income

(
Mg

)
, the

number of years averaged (Tg), or sample selection rules (pg) alter the distortion factor
∆(η) in equation (4). As a result, each estimate converges to a different context-specific
parameter βMI(η).

Distortions in ∆(η) also affect trend analyses, as both design choices and cohort-
specific income dynamics can vary over time. In the U.S., the PSID’s transition from
annual (1968–1997) to biennial interviews illustrates how survey design changes can al-
ter the estimand: reduced income observations for recent cohorts modify ∆(η) through
the observation probability pc, potentially distorting mobility trends. Empirical evidence
from Sweden further supports the theoretical distortions highlighted in Corollary 1.1.
Mello et al. (2024) show that MI-based estimates suggest a sharp decline in mobility for
the 1950s–1970s cohorts, whereas their life-cycle estimator, which corrects for life-cycle
bias in children’s income, indicates stable mobility across these cohorts, and a modest
increase for those born in the 1980s.

Finally, Corollary 1.1 formalizes how differences in study design and income dynamics
can undermine cross-country comparisons. Even under the same definitions of mid-life
income, differences in transitory shock persistence (a), children’s income growth (c),
and observation probabilities (b, d) alter the estimand βMI(η). This calls for caution in
interpreting international patterns such as the Great Gatsby Curve: unlike scale-free mea-
sures like the Gini coefficient, MI-based IGE estimates reflect both underlying mobility
and study-specific distortions captured by ∆(η).

Beyond its implications for common applications, Corollary 1.1 shows that eliminating
individual biases alone does not guarantee comparability. Even after correcting for spe-
cific sources of bias, differences in study design, cohort composition, or the magnitude
of residual distortions can still produce inconsistent estimates. This analysis highlights
a fundamental shift in perspective: rather than addressing individual sources of bias, at-
tention should be directed toward identifying the IGE, which simultaneously removes all
biases and allows for reliable, comparable estimates.

III. Identification, Estimation, and Inference for the IGE with Incomplete Data

A. nonparametric Identification

To establish identification of the intergenerational elasticity, we adopt the “forward-
engineering” strategy proposed by Mogstad and Torgovitsky (2024). In their terminol-
ogy, this approach begins with a model and then constructs estimators under the assump-
tion that the model is correctly specified. In the context of the IGE, our proposal precisely
follows this logic: begin by defining permanent income and then derive the conditions
under which the IGE is identified, given that definition.
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The literature has generally characterized permanent income rather than attempting to
provide a precise definition. For instance, in line with Solon (1992), Mazumder (2005)
interprets it as the permanent component of log earnings, capturing true long-term earn-
ing capacity. In contrast, Haider and Solon (2006) describes it as a long-run income
variable, such as the log of the present discounted value of lifetime earnings. Other
work (Black and Devereux, 2011; Corak, 2013) refer more generally to log permanent
earnings without elaborating further. Reflecting this theoretical heterogeneity, empirical
research has proxied permanent income differently; while some studies compute it as the
log of average annual income (Dahl and DeLeire, 2008; Mazumder, 2016), others take
the average of log annual income (Zimmerman, 1992; Bratberg et al., 2007).

It is crucial to clarify that our goal is not to define a unifying measure of permanent
income or to identify a uniquely correct IGE. The intergenerational elasticity has never
been directly observed; it has always been estimated under specific measurement choices
and assumptions. Our objective is instead pragmatic: to adopt a definition of permanent
income that is theoretically grounded, empirically tractable, and consistent with standard
practice in the literature. By settling on a workable definition, researchers can generate
estimates of the IGE that are more reliable and comparable across studies and datasets.
In this sense, the forward-engineering approach provides a foundation for comparability
and reliability, rather than a claim to recover the uniquely correct parameter.

Definition (Permanent income). For an individual of generation g (where g ∈ {c, f } for
child or father), permanent income

(
YP

g

)
is defined as their average log annual income

over a specific lifetime period from t = 1 to T:

YP
g B

1
T

T∑
t=1

Ygt, g ∈ {c, f },(5)

where Ygt is log annual income in year t, with t = 1 indicating the start age and T the
number of years covered.

Our definition of permanent income aligns with the literature that conceptualizes it as
the permanent component of log earnings. More importantly, this definition provides an
empirically tractable measure that facilitates the identification of the intergenerational
elasticity. The linearity of the sum-of-logs specification is crucial, as it permits the use
of standard missing-at-random (MAR) assumptions to recover permanent income from
partially observed data. An alternative definition involving the log of the average intro-
duces nonlinearities that preclude a similar identification strategy and require stronger
assumptions about the joint distribution of income over lifetime. For a detailed discus-
sion of these considerations, we refer the reader to Appendix A1. When applied to the
life-cycle estimator of Mello et al. (2024), our definition yields results that are virtually
identical to those obtained defining permanent income as the log of the average, as shown
in Table A1.

The fundamental challenge in estimating (identifying) the IGE is its reliance on un-
observed permanent income. Traditional approaches, such as the Generalized Error-
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in-Variables (GEIV) model (Haider and Solon, 2006), motivate the use of short-term
averages of income—typically during mid-life—by assuming a parametric link between
observed annual income and unobserved permanent income. In contrast, our definition
underpins the nonparametric nature of our identification result, enabling us to recover
the intergenerational elasticity without restrictive functional form assumptions.

While the IGE in equation (2) depends on unobserved permanent income for both gen-
erations, our definition allows us to reformulate the target parameter in terms of partially
observed (log) annual incomes:

β0 =
E

[(
YP

c − E
[
YP

c

]) (
YP

f − E
[
YP

f

])]
E

[(
YP

f − E
[
YP

f

])2
] =

∑T
t=1

∑T
j=1 E

[(
Yct − E

[
YP

c

]) (
Y f j − E

[
YP

f

])]
∑T

t=1
∑T

j=1 E
[(

Y f t − E
[
YP

f

]) (
Y f j − E

[
YP

f

])] ,
(6)

where the scaling component 1/T cancels out. Although this is a crucial step, it is not
sufficient for identification. To bridge this gap, we leverage observable characteristics by
decomposing (log) annual income as

Ygt = E
[
Ygt | Xgt

]
+ ϵgt, E

[
ϵgt | Xgt

]
= 0, g ∈ {c, f }, t = 1, . . . ,T,(7)

where Xgt are the elements in the observed characteristics X relevant for predicting (log)
annual income of generation g at time t, and ϵct is the nonparametric prediction error.
Although ϵct can be interpreted as an age shock, it differs conceptually from the age shock
vct in the GEIV model of Assumption 1-MI. Specifically, ϵct captures the component of
(log) annual income that is not explained by observed parental and own characteristics,
that is, the residual from a predictive model based on observables. In contrast, vct reflects
transitory deviations from an individual’s permanent income and arises within a latent
factor structure that distinguishes between the permanent and transitory components of
income.

To establish identification of the IGE, we proceed in two steps. First, we substitute the
income decomposition into equation (6) and impose conditional mean independence and
orthogonality assumptions involving observables and prediction errors, thereby elimi-
nating dependence on unobserved components. Second, we impose standard missing-
at-random assumptions to recover the necessary conditional moments from the available
data. For the income profiles, the MAR assumption enables identification of the con-
ditional expectation E[Ygt | Xgt] = E[Ygt | Xgt,Dgt = 1], where Dgt indicates income
observability at time t. In a similar way, we are able to identify the conditional sec-
ond moments arising in the denominator of equation (6) E[Y f tY f j | X f t j] = E[Y f tY f j |

X f t j,D f t = 1,D f j = 1], where X f t j comprises the elements in the observed character-
istics X relevant for predicting the covariance between parental incomes at ages t and
j, and X f t j is defined such that X f t ⊂ X f t j for t, j = 1, ...,T. With these foundations in
place, we now formally state our complete set of identifying assumptions.

Assumption 1-NP. (Conditional Mean Independence and Orthogonality)
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i. The observable characteristics satisfy:

1. E
[
Yct | Xct, Xc j, X f j

]
= E [Yct | Xct] for t, j = 1, ...T,

2. E
[
Y f t | X f t, X f t j, Xc j

]
= E

[
Y f t | X f t

]
for X f j ⊂ X f t j, t, j = 1, ...T.

ii. The average covariance between children’s prediction errors and parental perma-
nent income across all observed years is zero

1
T

T∑
t=1

E
[
ϵctYP

f

]
= 0, ϵct B Yct − E [Yct | Xct] .

iii. The average covariance of parental income prediction errors for |t − j| > h is zero

1
T 2

∑
|t− j|>h

E
[
ϵ f tϵ f j

]
= 0, ϵ f t B Y f t − E

[
Y f t | X f t

]
.

The first condition establishes that Xgt contains all relevant predictors for annual in-
come for generation g at time t, implying the remaining information in X provides no
additional explanatory power. In Section V we illustrate that the specification of the
characteristics predictive of income profiles and parental income covariance, namely,
Xct, X f t, and X f t j, can be designed to satisfy Assumption 1-NP.i by construction.

Children’s age shocks being correlated with parental permanent income constitutes a
source of bias of the MI estimator (component (c) in equation (3)). One of the empirical
patterns driving this dependence stems from children from affluent families exhibiting
faster income growth, even after controlling for observables (Mello et al., 2024). The
life-cycle estimator addresses this by projecting children’s annual income into the space
of observables. In particular, by including in Xct the interaction between average parental

(log) annual income observations around mid-life
(
ỸP

f =
1

T f

∑
j∈M f Y f jD f j

)
and chil-

dren’s age at time t, the prediction errors of children’s income
(
ϵgt = Ygt − E

[
Ygt | Xgt

])
become uncorrelated with parental permanent income YP

f . Accordingly, Assumption
1-NP.ii imposes that thee average covariance between children’s prediction errors and
parental permanent income across all observed years is zero, once we have controlled
for the relevant family characteristics. In Section III.D, we present a formal test for As-
sumption 1-NPii, and in our U.S. application, the test does not reject the validity of this
assumption.

The requirement of Assumption 1-NP.iii arises from the fundamental mismatch be-
tween the complete income profiles required by equation (6) and the income snap-
shots typically available in practice. Specifically, joint observation of parental incomes
(Y f t,Y f j) (i.e., D f t = 1,D f j = 1) occurs only for relatively close time periods, such
as incomes observed between ages 25 and 35 for a given individual. Consequently, in-
come pairs for distant periods (|t − j| > h) are systematically absent in available data.
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Assumption 1-NP.iii addresses this empirical constraint by imposing that conditional on
family characteristics X f t j, parental income shocks (prediction errors ϵ f t and ϵ f j) are
uncorrelated for periods separated by more than h years. The availability of rich family
characteristics X makes this assumption empirically plausible, as it allows us to account
for the persistent components of intertemporal dependence.

Income autocorrelation captures two distinct sources: a permanent component driven
by family characteristics (e.g., wealth, neighborhood quality, and race), and a transitory
component, driven by short-term shocks (e.g., unemployment spells, economic crises,
or health events). Crucially, while the influence of transitory shocks decays as the time
gap (t − j) widens, the effect of family background characteristics remains over time.
Assumption 1-NP.iii states that parental annual income from periods more than h years
in the past influences current income solely through observed characteristics. This spec-
ification serves dual purposes: it realistically captures the (conditional) short-memory of
transitory shocks while accommodating the limitations inherent in available longitudinal
datasets. In Section III.D, we present a formal test for Assumption 1-NPiii, and in our
U.S. application, the test does not reject the validity of this assumption.

The following assumption formalizes some necessary conditions for identifying the
intergenerational elasticity using partial income data and family characteristics. First, it
requires that income realizations, for both generations and across nearby ages for fathers,
are independent of their observability conditional on family characteristics. This ensures
that survey attrition or non-reporting is not systematically associated with unobserved
income determinants, ruling out selection bias. Second, it imposes an overlap condition
guaranteeing sufficient data coverage across individuals and age windows, preventing
estimates from being driven by specific reporting patterns or missing subpopulations.
Together, these conditions prevent two key threats to validity: estimates being distorted
either by systematic missingness (e.g., concentrated among low-income families) or by
over-reliance on narrow age clusters. When satisfied, they ensure that inference is driven
by income dynamics rather than data availability.

According to equation (6), the IGE depends on two distinct components: the covari-
ance between parent and child income and the covariance within parental income, which
implies that identification requirements differ across generations. For children, uncon-
foundedness needs only to hold for single income observations since the IGE exploits
contemporaneous parent-child pairs, whereas for fathers, stronger conditions on income
tuples are required to capture the temporal structure of their income process.

Assumption 2-NP. (Missing At Random)

i. The missingness of children’s annual income Yct is as good as random once we
control for Xct

Yct ⊥ Dct | Xct, t = 1, ...,T.

ii. Given family characteristics, there is both missing and non-missing children incomes
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for every age

0 <p (Dct = 1 | Xct) < 1 a.s, t = 1, ...,T.

iii. The missingness of parental annual income pairs
(
Y f t,Y f j

)
is as good as random

once we control for X f t j(
Y f t,Y f j

)
⊥

(
D f t,D f j

)
| X f t j, for all t − j > h > 0,

where X f t j are the family characteristics predictive of parental income covariance
between years t and j, and X f t j B X f t for j = t.

iv. Given family characteristics, there is both missing and non-missing parental in-
comes for every age and its neighboring ages

0 < p
(
D f t = 1,D f j = 1 | X f t j

)
< 1 a.s., for all t − j > h > 0.

Assumption 2-NP imposes a missing-at-random structure for child and parental in-
comes and a positivity condition for identification, similar to the conditional indepen-
dence assumptions in Angrist and Imbens (1995). The assumption that income missing-
ness in the PSID is missing at random is supported by empirical evidence. Fitzgerald
et al. (1998) finds that attrition in the PSID is selective, primarily affecting lower socioe-
conomic individuals and those with unstable earnings, marriage, and migration histories,
but these factors explain little of the overall attrition, and regression-to-the-mean effects
mitigate selection bias. This conclusion is reinforced by Lillard and Panis (1998), who
find that ignoring attrition induces only very mild biases in household income models.

Fitzgerald (2011) examines attrition in intergenerational models of health, education,
and earnings, finding that sibling correlations in outcomes are marginally higher among
individuals who remain in the panel longer, though the differences are not statistically
significant. Models of intergenerational links with covariates show negligible attrition
bias for females. In contrast, the evidence for males is mixed but generally weak, sug-
gesting that conditioning on observables largely mitigates selective attrition. The study
finds little evidence of attrition bias, though analyses of educational and earnings out-
comes for men appear to benefit from conditioning on observables.

Schoeni and Wiemers (2015) show that applying sample weights reduces differences
in intergenerational income elasticity estimates between the full sample, the attriting
sample, and the non-attriting sample, rendering these differences statistically insignifi-
cant. Their findings highlight that attrition, particularly higher among lower-income in-
dividuals, is influenced by the correlation between child and parental income outcomes,
emphasizing the importance of incorporating both parental and child characteristics in
analyses of intergenerational mobility.

Taken together, the literature suggests that the MAR assumption for income miss-
ingness in the PSID is empirically plausible, provided analyses carefully account for
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relevant observables. To address the concerns raised by Schoeni and Wiemers (2015),
particularly the influence of the correlation between parental and child income outcomes
on observability, our analysis incorporates both parental and child characteristics in the
conditioning set, thereby strengthening the plausibility of the MAR assumption in our
analysis.

The following Theorem establishes the nonparametric identification of the intergener-
ational elasticity in the presence of incomplete income data and family characteristics.
This fundamental result ensures that estimates derived from the identification result are
comparable across studies, providing a building block to analyze intergenerational mo-
bility under valid inference.

Theorem 1. Under assumptions 1-NP and 2-NP and the definition of permanent income
in equation (5), the IGE is nonparametrically identified as

β0 =
E

[∑T
t=1

(
µct (Xct, 1) − µP

c

)∑T
j=1

(
µ f j

(
X f j, 1

)
− µP

f

)]
E

[∑
|t− j|≤h σt j

(
X f t j, 1, 1

)
+

∑
|t− j|>h

(
µ f t

(
X f t, 1

)
− µP

f

) (
µ f j

(
X f j, 1

)
− µP

f

)] ,(8)

where µgt(Xgt, 1) B E
[
Ygt | Xgt,Dgt = 1

]
, µP

g B E
[∑T

t=1 µgt(Xgt, 1)
]
, andσt j

(
X f t j, 1, 1

)
B

E
[(

Y f t − µ
P
f

) (
Y f j − µ

P
f

)
| X f t j,D f t = 1,D f j = 1

]
.

Theorem 1 establishes the identification of the intergenerational elasticity in the pres-
ence of incomplete income data. Specifically, it shows that, under the conditional mean
independence and orthogonality conditions in Assumption 1-NP and the standard missing-
at-random assumptions in 2-NP, the IGE can be recovered from conditional expectations,
including the conditional income profiles of parents and children, and the conditional co-
variance matrix of parental income.

To the best of our knowledge, the only existing identification result in this framework
is that of An et al. (2022) who nonparametrically identify the mobility function relating
children’s to parents permanent income. While their more general framework nests the
linear IGE as a special case, since they leave the relationship of parental and child in-
comes unspecified, our approach offers three important advantages. First, we relax their
classical errors-in-variables model (Assumption 1-MI with λt = 1) for two measurement
periods, by exploiting the definition of permanent income. Second, we relax the assump-
tion that transitory shocks to children’s income are uncorrelated with parental permanent
income and parental transitory shocks. In contrast, we assume that the prediction error
of the children’s annual income is uncorrelated to parental permanent income condi-
tional on family characteristics (Assumption 1-NP). Finally, our framework explicitly
addresses the missing data structure inherent in real-world income observations, while
incorporating all available information on both income dynamics and family character-
istics.

Our identification result provides two valuable contributions to the study of intergen-
erational mobility. First, it resolves persistent methodological challenges by establishing
sufficient conditions for identifying the intergenerational elasticity from incomplete in-
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come observations and family characteristics. Second, and more importantly, it provides
the theoretical foundation for constructing a consistent estimator, enabling researchers to
obtain valid and comparable estimates of the intergenerational elasticity.

B. Locally Robust Estimation of the IGE

We estimate the intergenerational elasticity β0 using a Generalized Method of Mo-
ments (GMM) approach based on Theorem 1. We begin by rearranging equation (8) to
derive the moment condition that identifies β0:

E
[
g1

(
W, γ, β, µP

c , µ
P
f

)]
= 0,

g1

(
W, γ, β, µP

c , µ
P
f

)
= β

∑
|t− j|≤h

σt j

(
X f t j, 1, 1

)
+ β

∑
|t− j|>h

(
µ f t

(
X f t, 1

)
− µP

f

) (
µ f j

(
X f j, 1

)
− µP

f

)
−

T∑
t=1

(
µct (Xct, 1) − µP

c

) T∑
j=1

(
µ f j

(
X f j, 1

)
− µP

f

)
,(9)

where γ B (σt j, µ f t, µ f j). Thus, the moment identifying the IGE depends on the income
profiles and parental income covariance structure, captured by the nuisance parameter γ,
as well as the population mean permanent incomes

(
µP

c , µ
P
f

)
. These means are themselves

identified by the moment conditions (see equation (B2)):

E
[
g2

(
W, γ, µP

c

)]
= 0, g2

(
W, γ, µP

c

)
=

T∑
t=1

µct (Xct, 1) − µP
c ,

E
[
g3

(
W, γ, µP

f

)]
= 0, g3

(
W, γ, µP

f

)
=

T∑
t=1

µ f t
(
X f t, 1

)
− µP

f .

Finally, we define the augmented parameter θ B
(
β, µP

c , µ
P
f

)
, and combine the moment

conditions into a single system for GMM estimation

g (W, γ, θ) = (g1 (W, γ, θ) g2 (W, γ, θ) g3 (W, γ, θ))′ .

Because the nuisance parameter γ is unknown, a natural two-step estimation procedure
is to first estimate the conditional expectations in γ, and then perform GMM estimation
based on g (W, γ̂, θ). As in any two-step procedure, errors in the first step affect inference
in the second. This issue is especially pronounced when machine learning (ML) is used,
because regularization and model selection allow for bias to attain smaller variance. As
a result, bias from the first step propagates to the second. This is formally captured by
the sensitivity of the moment condition to small changes in the nuisance parameter:

d
dτ
E[g(W, γτ, θ)]

∣∣∣
τ=0 , 0,
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indicating that the moment identifying θ is not locally robust to estimation error in γ0.
Chernozhukov et al. (2022) provide a general procedure for constructing orthogonal

moment functions for GMM, where the moment conditions are locally insensitive to
first-step estimation. This property ensures that the resulting estimator is locally robust,
meaning that estimation errors in the first step have no effect, locally, on the estimation of
the parameter of interest. The authors show that an orthogonal (locally robust) moment
function ψ can be constructed by augmenting the identifying moment function g with a
correction term ϕ:

ψ (W, γ, α, θ) = g (W, γ, θ) + ϕ (W, γ, α, θ) ,

where α encompasses additional nuisance parameters introduced by ϕ.

Proposition 2. There exists a function ϕ such that the augmented moment condition

ψ (W, γ, α, θ) = g (W, γ, θ) + ϕ (W, γ, α, θ)

identifies the intergenerational elasticity, as well as the population mean of permanent
incomes, and satisfies local robustness:

d
dτ
E[ψ(W, γτ, α, θ)]

∣∣∣
τ=0 = 0,

where ψ is given by equation (B26). This latter property ensures that the estimator of the
intergenerational elasticity is first-order insensitive to estimation error in the nuisance
parameter γ.

The locally robust closed-form solution for the IGE follows directly from Proposition
2. In particular, solving for β in the orthogonal moment condition yields:

β =
E

[∑T
t=1

(
µct (Xct, 1) − µP

c

)∑T
j=1

(
µ f j

(
X f j, 1

)
− µP

f

)]
+ E

[
ϕ4 + ϕ5

]
E

[∑
|t− j|≤h σt j

(
X f t j, 1, 1

)
+

∑
|t− j|>h

(
µ f t

(
X f t, 1

)
− µP

f

) (
µ f j

(
X f j, 1

)
− µP

f

)]
+ E

[
ϕ1 + ϕ2 + ϕ3

] ,
(10)

where

ϕ1 = β
∑
|t− j|≤h

D f tD f j

p
(
D f t = 1,D f j = 1|X f t j

) ((
Y f t − µ

P
f

) (
Y f j − µ

P
f

)
− σt j

(
X f t j, 1, 1

))
,

ϕ2 =
∑
|t− j|>h

(
µ f j

(
X f j, 1

)
− µP

f

) D f t

p
(
D f t = 1|X f t

) (
Y f t − µ f t

(
X f t, 1

))
,

ϕ3 =
∑
|t− j|>h

(
µ f t

(
X f t, 1

)
− µP

f

) D f j

p
(
D f j = 1|X f j

) (
Y f j − µ f j

(
X f j, 1

))
,
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ϕ4 =

T∑
t=1

T∑
t= j

(
µct (Xct, 1) − µP

c

) D f j

p
(
D f j = 1|X f j

) (
Y f j − µ f j

(
X f j, 1

))
,

ϕ5 =

T∑
t=1

T∑
t= j

(
µ f j

(
X f j, 1

)
− µP

f

) Dct

p (Dct = 1|Xct)
(Yct − µct (Xct, 1)) ,

µP
c = E

 T∑
t=1

µct (Xct, 1)

 + E
 T∑

t=1

Dct

p (Dct = 1|Xct)
(Yct − µct (Xct, 1))

 ,
µP

f = E

 T∑
t=1

µ f t
(
X f t, 1

) + E
 T∑

t=1

Dct

p
(
D f t = 1|X f t

) (
Y f t − µ f t

(
X f t, 1

)) .

The locally robust closed-form solution for β in equation (10) corresponds to the ex-
pression given in Theorem 1, augmented with correction terms that make it first-order
insensitive to estimation errors in the nuisance parameters. The term ϕ1 corrects for
errors in estimating the conditional covariance of parental income for closely spaced pe-
riods (|t − j| ≤ h), while ϕ2 and ϕ3 address errors in estimating parental income profiles
for more distant periods (|t − j| > h). Similarly, ϕ4 and ϕ5 correct for errors in estimating
the conditional income profiles of children and parents, respectively. A critical feature of
all correction terms (ϕ1 to ϕ5) is their inherent adjustment for non-random missingness
by weighting prediction errors by the inverse propensity score. Finally, the closed-form
expressions for the population means of permanent incomes (µP

c and µP
f ) also incorporate

the corresponding prediction errors, ensuring that the estimator remains locally robust to
first-step estimation mistakes.

Equation (10) illustrates why we define the augmented parameter θ B (β, µP
c , µ

P
f ) rather

than including µP
c and µP

f in the nuisance parameter γ. Each population mean µP
g depends

not only on the conditional income profiles µg,t but also on the underlying population
distribution. Consequently, small changes in the population distribution affect µP

g both
through the conditional profiles and through the expectation itself. Thus, including µP

g in
γ would therefore make the closed-form solution for β considerably more complex. By
keeping µP

c and µP
f in θ, we separate the estimation of population permanent means from

the first-step nuisance functions, which makes the locally robust solution more tractable.

To construct a debiased machine learning estimator for the IGE, we use the orthogo-
nal moment condition in Proposition 2 (see equation (B26)) combined with cross-fitting
to ensure robustness and mitigate overfitting. Following Semenova et al. (2023), cross-
fitting in settings with dependence should be performed at the level of independent sam-
pling units, in our case, families, rather than individual child–father pairs. Accordingly,
let f ∈ {1, . . . , n f } index families, with P f denoting the set of all child–father pairs in
family f . We partition the set of family indices into L mutually exclusive and exhaustive
folds {Fℓ}Lℓ=1. For each fold ℓ = 1, . . . , L, the nuisance parameters γ̂(ℓ) and α̂(ℓ) are esti-
mated using only data from families not in Fℓ, thereby preserving independence between
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the samples used for first-stage estimation and those used for evaluation.
The debiased moment function is then computed as

ψ̂(θ) =
1
n

L∑
ℓ=1

∑
f∈Fℓ

∑
i∈P f

∑
(t, j)∈Ji

ψ̂(ℓ)
i,t j, ψ̂(ℓ)

i,t j B g
(
Wi,t j, γ̂

(ℓ), θ
)
+ ϕ

(
Wi,t j, γ̂

(ℓ), α̂(ℓ), θ
)
,

where Ji denotes the set of all tuples (t, j) observed for child–father pairs i, noting that
a family may contribute multiple such pairs. Since the system is exactly identified, there
is no need to compute fold-specific θ̂(ℓ). The locally robust estimator of the IGE is thus
obtained by solving

θ̂LR
n = arg min

θ∈Θ⊂R3
ψ̂(θ)′Υ̂ψ̂(θ).

where Υ̂ is a positive semi-definite weighting matrix, and Θ denotes the set of param-
eter values. This objective function incorporates orthogonal moments and cross-fitting.
While the influence function corrects for prediction errors in estimating the conditional
expectations, cross-fitting eliminates overfitting in nuisance parameter estimation. Fur-
thermore, by grouping folds at the family level, our approach aligns with the principle of
leaving out dependent “neighbor” units in panel settings (Semenova et al., 2023), ensur-
ing that dependence within families does not bias the orthogonalization step.

C. Asymptotic Theory and Inference

Asymptotic Properties of the Locally Robust Estimator. — To provide rigorous justifica-
tion for the empirical implementation of our proposed estimator, we examine its large-
sample behavior. We begin by establishing consistency, which follows from standard
M-estimation theory, adapted to the locally robust framework of Chernozhukov et al.
(2022). While their main asymptotic results assume consistency, Theorem A3 provides
primitive conditions under which it holds. The following Lemma adapts these conditions
to our setting.

Lemma 1 (Consistency of the Locally Robust Estimator). Let θ̂LR
n be the solution to the

cross-fitted orthogonal moment condition:

θ̂LR
n = arg min

θ∈Θ⊂R3
ψ̂(θ)′Υ̂ψ̂(θ), ψ̂(θ) =

1
n

L∑
ℓ=1

∑
f∈Fℓ

∑
i∈P f

∑
(t, j)∈Ji

ψ̂(ℓ)
i,t j,

ψ̂(ℓ)
i,t j B g

(
Wi,t j, γ̂

(ℓ), θ
)
+ ϕ

(
Wi,t j, γ̂

(ℓ), α̂(ℓ), θ
)
,

where Υ̂ is a positive semi-definite weighting matrix. Then θ̂LR
n

p
→ θ0, by Theorem A3 in

Chernozhukov et al. (2022), provided Assumptions 1-NP, 2-NP and C-NP hold.

Lemma 1 shows that under mild regularity conditions θ̂LR
n =

(
β̂LR

n , µ̂P
c,n, µ̂

P
F,n

)
converges

in probability to the true parameter θ0. The consistency of the locally robust estimator
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guarantees that, under the specified conditions, the estimated intergenerational elasticity
β̂LR

n converges to the true value β0 as the sample size increases. This ensures that the esti-
mator remains stable even when machine learning methods are used to estimate nuisance
parameters. As a result, the estimates of the intergenerational elasticity are both reliable
and comparable across different studies.

Under the regularity conditions described in Appendix B4, we establish the asymp-
totic normality of our proposed estimator, that explicitly accounts for uncertainty from
the first-stage estimation of the nuisance parameters. This yields confidence intervals
with valid coverage, a crucial requirement for drawing meaningful conclusions about
intergenerational mobility patterns.

The following Lemma formalizes the validity of inference for the estimator θ̂LR
n , even

when nuisance components are estimated using high-dimensional or nonparametric meth-
ods. This robustness is achieved through the use of orthogonal moment conditions, which
ensure that estimation errors in the first stage enter the moment function only at second
order. As a result, standard

√
n asymptotic normality can be established under rela-

tively weak conditions. Crucially, cross-fitting plays a central role in mitigating own-
observation bias and avoids the need for stringent entropy or Donsker-type conditions,
which are not known to hold for many machine learning first steps. Together, these fea-
tures allow us to leverage flexible first-stage methods while maintaining valid inference.

Lemma 2 (Asymptotic Normality of the Locally Robust Estimator). Under Assumptions
1-NP-5-LR and 7-LR, θ̂LR

n
p
−→ θ0, and non-singularity of G′ΥG, the asymptotic normality

of the estimator θ̂LR
n directly follows from Theorem 9 of Chernozhukov et al. (2022).

Specifically, we have:
√

n(θ̂LR
n − θ0)

d
−→ N(0,V),

whereV = (G′ΥG)−1, G = E[∂θg(W, γ, α, θ)], and Υ̂ is the estimated efficient weight-
ing matrix defined as Υ̂ = Ψ̂−1 for Ψ̂ = 1

n
∑L
ℓ=1

∑
i∈Iℓ

∑
(t j)∈Ji ψ̂

(ℓ)
i,t jψ̂

(ℓ)′
i,t j . In addition, if

Assumption 6-LR holds, then V̂
p
−→ V.

Lemma 2 completes the theoretical framework by integrating our three contributions:
(i) the nonparametric identification of the intergenerational elasticity in the presence of
incomplete income data; (ii) a consistent, locally robust estimator that corrects for first-
step prediction errors; and (iii) valid inference that accounts for uncertainty from the
first-stage estimation of nuisance parameters. Appendix B4 characterizes the asymptotic
variance V associated with this result. Together, these advances provide a theoretically
grounded toolkit for studying income persistence through the lens of the intergenera-
tional elasticity.

The asymptotic normality result in Lemma 2 is derived under the assumption of inde-
pendently and identically distributed (i.i.d.) observations. In practice, however, datasets
commonly include multiple children from the same family, introducing correlation within
families. Accordingly, the asymptotic variance V should be estimated using a cluster-
robust approach that accounts for this dependence structure. While the i.i.d. assumption
is adopted here for ease of exposition and to align with the general theoretical framework



20

of Chernozhukov et al. (2022), the core identification and estimation strategy remains
sound. The cluster-robust extension is a straightforward implementation detail for the
variance estimation, where the moment functions ψ̂i,t j is aggregated at the family level
before constructing the variance-covariance matrix Ψ̂, accounting for correlation within
families in the standard errors.

D. Tests for Identification Assumptions

This section develops formal hypothesis tests for Assumptions 1-NP.ii and 1-NP.iii.
In contrast, no formal tests are provided for the remaining assumptions. Specifically,
as illustrated In Section V the specification of the characteristics predictive of income
profiles and parental income covariance, namely, Xct, X f t, and X f t j, can be designed to
satisfy Assumption 1-NP.i by construction. The MAR conditions in Assumptions 2-NP.i
and 2-NP.iii are not directly testable from the observed data, as they involve unobserved
missingness mechanisms. Nevertheless, as discussed above, the literature suggests that
the MAR assumption for income missingness in the PSID is empirically plausible, pro-
vided that analyses carefully account for relevant observables. Consistent with the find-
ings in Schoeni and Wiemers (2015), we include both child and father characteristics in
the conditioning set, thereby strengthening the plausibility of the MAR assumption in
our analysis. Finally, the boundedness condition on the propensity score in Assumptions
2-NP.ii and 2-NP.iv can be assessed informally through visual inspection.

We start by considering a test for the orthogonality between children’s prediction errors
and parental permanent income

H0 :
1
T

T∑
t=1

E
[
ϵctYP

f

]
= 0, vs H1 :

1
T

T∑
t=1

E
[
ϵctYP

f

]
, 0,(11)

where ϵct B Yct − E [Yct | Xct] denotes the children’s income prediction errors at time t
and YP

f represents parental permanent income. The main challenge in testing this hypoth-
esis is that both random variables are unobserved, and their machine learning estimation
introduces regularization and model selection bias when testing H0. To address these is-
sues, we propose a three stages procedure. First, we establish identification of the object
of interest θc f B

1
T

∑T
t=1 E

[
ϵctYP

f

]
. Second, we construct a locally robust estimator θc f .

Finally, we provide a t−test based on θ̂c f .
In Appendix B5 we show that a locally robust t−test for H0 in (11) is given by

tc f ,n =
θ̂c f ,n√
V̂c f ,n/n

,

where θ̂c f ,n is the argument solving the cross-fitted locally robust moment in equation
(B30), and V̂c f ,n is a consistent estimator of the asymptotic variance of θ̂c f ,n, that accounts
for dependence within families. Similar to the locally robust estimator for the IGE, this
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cluster-robust variance estimator is constructed by aggregating moment functions at the
family level to allow for arbitrary correlation between observations from the same family,
while maintaining independence across different families.

The following Theorem establishes the asymptotic properties of this locally robust
t−test.

Theorem 2. (Size, Consistency, and Local Power of the Locally Robust t−Test I) Un-
der Assumptions 1-NP’, 2-NP’, 3-LR-7-LR and C-NP, the asymptotic properties of the
locally robust t statistic

tc f ,n =
θ̂c f ,n√
V̂c f ,n/n

are given by the following statements:

1) (Asymptotic size) Under H0 : θc f 0 = 0,

tc f ,n
d
−→ N(0, 1) and lim

n→∞
Pr

(
|tc f ,n| > z1−α/2

)
= α,

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.

2) (Consistency under fixed alternatives) For any fixed alternative with θc f 0 , 0,

lim
n→∞

Pr
(
|tc f ,n| > z1−α/2

)
= 1.

3) (Local alternatives) Under H1n : θc f 0 = δ/
√

n with fixed δ ∈ R,

tc f ,n
d
−→ N

 δ√
Vc f

, 1

 ,
so the limiting power is

lim
n→∞

Pr
(
|tc f ,n| > z1−α/2

)
= 2

1 − Φ z1−α/2 −
|δ|√
Vc f

 > α whenever δ , 0,

where Φ(·) denotes the standard normal cumulative distribution function.

To test that the parental income prediction errors are uncorrelated for |t − j| > h, we
propose the test

H0 :
1

T 2

∑
t− j=h+1

E
[
ϵ f tϵ f j

]
= 0, vs H1 :

1
T 2

∑
t− j=h+1

E
[
ϵ f tϵ f j

]
, 0(12)
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In Appendix B5 we show that a locally robust t−test for H0 in (12) is given by

t f h,n =
θ̂ f h,n√
V̂ f h,n/n

where θ̂ f h,n is the argument solving the cross-fitted orthogonal moment in equation (B33),
and V̂ f h,n is a consistent estimator of the asymptotic variance of θ̂c f ,n, that accounts for
dependence within families.

The following Corollary establishes the asymptotic properties of this locally robust
t−test.

Corollary 2.1. (Size, Consistency, and Local Power of the Locally Robust t−Test II)
Under Assumptions 1-NP”, 2-NP”, 3-LR-7-LR, C-NP, and 8-NP”, the asymptotic prop-
erties of the locally robust t statistic

t f h,n =
θ̂ f h,n√
V̂ f h,n/n

are given by the following statements:

1) (Asymptotic size) Under H0 : θ f h0 = 0,

t f h,n
d
−→ N(0, 1) and lim

n→∞
Pr

(
|t f h,n| > z1−α/2

)
= α,

where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.

2) (Consistency under fixed alternatives) For any fixed alternative with θ f h0 , 0,

lim
n→∞

Pr
(
|t f h,n| > z1−α/2

)
= 1.

3) (Local alternatives) Under H1n : θ f h0 = δ/
√

n with fixed δ ∈ R,

t f h,n
d
−→ N

 δ√
V f h

, 1

 ,
so the limiting power is

lim
n→∞

Pr
(
|t f h,n| > z1−α/2

)
= 2

1 − Φ z1−α/2 −
|δ|√
V f h

 > α whenever δ , 0,

where Φ(·) denotes the standard normal cumulative distribution function.
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IV. Simulations

We consider the following data generating process for generation g at age t:

Ygt = γ0,g + γ1,gX1,g + γ2,gX2,g + γ3,gt + γ4,gt2 + γ5,gX1,gt + ϵgt, t = 1, ...,T, g ∈ {c, f },

ϵgt ∼ N
(
0, σ2

ϵ

)
(
X j,c

X j, f

)
∼ N

((
0
0

)
,

(
1 σ j

σ j 1

))
, j = 1, 2.

Using the definition of permanent income:

YP
g = γ0,g + γ1,gX1,g + γ2,gX2,g + γ3,g t̄ + γ4,g t̄2 + γ5,gX1,g t̄ + ϵ̄g, g ∈ {c, f },(13)

t̄ =
1
T

T∑
t=1

t, t̄2 =
1
T

T∑
t=1

t2, ϵ̄g =
1
T

T∑
t=1

ϵgt,

so the covariance between permanent incomes is given by

Cov
(
YP

c ,Y
P
f

)
= Cov

(
γ1,cX1,c, γ1, f X1, f

)
+ Cov

(
γ2,cX2,c, γ2, f X2, f

)
+ Cov

(
γ5,cX1,c t̄, γ5, f X1, f t̄

)(14)

+ Cov
(
γ1,cX1,c, γ5, f X1, f t̄

)
+ Cov

(
γ5,cX1,c t̄, γ1, f X1, f

)
= γ1,cγ1, fσ1 + γ2,cγ2, fσ2 + γ5,cγ5, f t̄2σ1 + γ1,cγ5, f t̄σ1 + γ5,cγ1, f t̄σ1,

where we have used that the covariates come from a bivariate normal distribution with
zero mean and correlation σ j among generations.

According to equation (13), the variance of parental income corresponds to

Var
(
YP

f

)
= γ2

1, f + γ
2
2, f + γ

2
5, f t̄

2 + 2γ1, fγ5, f t̄ + σ2
ϵ/T.(15)

Finally, by plugging equations (14) and (15) into (2) yields

β0 =
E

[(
YP

c − E
[
YP

c

]) (
YP

f − E
[
YP

f

])]
E

[(
YP

f − E
[
YP

f

])2
]

=
σ1

(
γ1,cγ1, f + γ5,cγ5, f t̄2 +

(
γ1,cγ5, f + γ5,cγ1, f

)
t̄
)
+ γ2,cγ2, fσ2

γ2
1, f + γ

2
2, f + γ

2
5, f t̄

2 + 2γ1, fγ5, f t̄ + σ2
ϵ/T

.(16)

Setting the parameter values to

γ0,c = 8.5, γ0, f = 5, γ1,c = 0.275, γ1, f = 0.4,
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γ2,c = 0.2, γ2, f = 0.25, γ3,c = 0.4, γ3, f = 0.5,
γ4,c = −0.005, γ4, f = −0.0045, γ5,c = 0.01, γ5, f = 0.015,
σ1 = 0.75, σ2 = 0.75, σϵ = 1, t = 20, . . . , 60,

yields T = 41, and β0 = 0.50 according to equation (16).
We consider the setting above for sample sizes n = 100, 500, 1000, and 2000, where

we randomly draw 20%, 35%, and 50% of each sample by drawing income snapshots
from parents and children as follows. First, for each individual i, we draw a contiguous
observation period length from a right-censored Poisson distribution:

ℓi = min
(
max(OWP

i , 2), 41
)
, OWP

i ∼ Pois(λ),

where λ ≈ 10, 20, andor 31 years for 20%, 35%, and 50% coverage respectively. Then,
the observation window begins at a random age:

ai ∼ U (20, 60 − ℓi + 1)

ensuring complete coverage within the 20-60 age range. Thus, only incomes satisfying
t ∈ [ai, ai+ℓi) are observed, with other years being missing (completely at random), mim-
icking common data limitations in mobility studies. This creates contiguous observation
blocks that mimic real-world data limitations where income histories armay only be ob-
served during certain life periods, mimicking realistic administrative or survey-based
data constraints. The sampling is performed separately for children and parents.

We assess the performance of our Locally Robust (LR) estimator by examining its bias
and coverage properties relative to three alternative approaches: (1) the plug-in machine
learning estimator, (2) the mid-life income estimator, and (3) the life-cycle estimator. We
estimate income profiles for both generations using XGBoost Regression, which also al-
lows us to compute the conditional covariance of parental income. Propensity scores are
estimated via logistic regression. The core difference between the locally robust (LR)
and plug-in machine learning estimators lies in their moment conditions: the LR esti-
mator uses a Neyman-orthogonal moment that incorporates the influence function of the
first-stage estimates, while the plug-in estimator relies on the uncorrected identifying
moment. For the mid-life income estimator, fathers’ permanent income is proxied by av-
eraging earnings from ages 30 to 40, and children’s income is based on a single mid-life
earnings draw. In contrast, the life-cycle estimator uses the same paternal income proxy
but estimates children’s permanent income as the average of predicted earnings over the
life cycle from XGBoost Regression. Estimation proceeds in two steps: hyperparameter
tuning using 5-fold cross-validation, followed by cross-fitting to prevent overfitting. In
all simulations, we use 500 Monte Carlo replications.

Table 1 presents the finite-sample performance of four estimators for the intergen-
erational elasticity, evaluated through bias and coverage rates across 500 Monte Carlo
replications. The true IGE is 0.5, with a nominal coverage rate of 0.95. The analysis
spans three sample sizes (n = 100, 500, 1000, 2000) and three observation probabilities
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(κ = 0.20, 0.35, 0.50).

Table 1—: Bias and coverage of different estimators for the IGE for different sample
sizes and observation probability.

Locally Robust Plug-in Machine Learning Life-cycle Mid-life

n Bias Coverage Bias Coverage Bias Coverage Bias Coverage
κ = 0.20
100 -0.00506 0.91 -0.07358 0.56 -0.19255 0.29 -0.19890 0.86
500 -0.00347 0.95 -0.03991 0.43 -0.17193 0.00 -0.18762 0.43
1000 -0.00129 0.92 -0.02981 0.41 -0.17010 0.00 -0.18462 0.17
2000 -0.00132 0.93 -0.03414 0.11 -0.17311 0.00 -0.18699 0.01
κ = 0.35
100 -0.00685 0.91 -0.05702 0.66 -0.17529 0.17 -0.18318 0.75
500 -0.00314 0.94 -0.02800 0.66 -0.15818 0.00 -0.17540 0.17
1000 -0.00230 0.93 -0.03077 0.35 -0.15885 0.00 -0.17099 0.01
2000 0.00109 0.92 -0.01376 0.67 -0.15142 0.00 -0.16894 0.00
κ = 0.50
100 -0.00317 0.91 -0.04778 0.72 -0.16108 0.12 -0.15682 0.73
500 0.00561 0.93 -0.01547 0.84 -0.14557 0.00 -0.15302 0.12
1000 0.00460 0.93 -0.01928 0.67 -0.14741 0.00 -0.15481 0.01
2000 0.00306 0.92 -0.00949 0.82 -0.13861 0.00 -0.15465 0.00

Results based on 500 Monte Carlo replications with true IGE equal to 0.5 and the nominal coverage is 0.95.

The locally robust estimator demonstrates superior performance, with bias decreasing
as sample size increases (e.g., from −0.0051 at n = 100 to −0.0015 at n = 2000 for
κ = 0.20). This aligns with expected

√
n-consistency, reflecting its robustness to sample

size variations. Coverage rates remain close to the nominal 0.95, ranging from 0.91
to 0.95 across all scenarios, with minor undercoverage at smaller sample sizes (n =
100). Notably, both bias and coverage are largely insensitive to changes in κ, indicating
stability across varying observation probabilities.

In contrast, the plug-in machine learning estimator exhibits substantially higher bias
in absolute terms (e.g., −0.0736 at n = 100 vs. −0.0095 at n = 2000 for κ = 0.50). Its
coverage rates are consistently below the nominal 0.95, improving from 0.56 to 0.82 as
sample size increases for κ = 0.50, but remaining inadequate. This poor performance
underscores the limitations of the plug-in approach, particularly in smaller samples or
lower observation probabilities, justifying the preference for the locally robust estimator.

The life-cycle and mid-life estimators show significant and persistent bias across all
sample sizes and κ values (e.g., life-cycle bias ranges from −0.19 to −0.14, mid-life from
−0.199 to −0.154. Their coverage rates are notably poor, deteriorating to 0 for larger
samples (n = 2000) due to miss-centered confidence intervals. As sample size increases,
reduced sampling variability narrows these intervals, but uncorrected bias causes them
to miss the true IGE.

Caution is warranted when interpreting the results for the LC versus MI estimator.
The comparable performance of the life-cycle and mid-life estimators arises from the
design of the data-generating process (DGP), which may not fully capture real-world
income dynamics. The life-cycle estimator, designed to account for empirical income
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process patterns, may exhibit understated bias reduction in this simulation due to the
DGP’s simplified structure. In practical applications, where income processes are more
complex, the life-cycle estimator would potentially outperform the mid-life estimator.

Overall, the locally robust estimator emerges as the most reliable, offering low bias and
near-nominal coverage across all settings. The plug-in machine learning estimator, while
improving with larger samples, remains inferior due to higher bias and poor coverage.
The life-cycle and mid-life estimators are consistently outperformed, highlighting the
importance of consistent and locally robust estimation in analyzing the IGE.

V. Consistent Estimation of the Intergenerational Elasticity in the United States

In this section, we implement our locally robust estimator to measure the intergener-
ational elasticity of income in the United States. Our analysis employs the Panel Study
of Income Dynamics (PSID), the world’s longest-running longitudinal household survey.
Launched in 1968 with a nationally representative sample of 5,000 U.S. families (over
18,000 individuals), the PSID has continuously tracked these families and their descen-
dants, collecting rich data on income, wealth, employment, education, health, and other
socioeconomic outcomes.

Our sample consists of 1,138 child–father pairs, for children born between 1952 and
1960, using the same age span as in Mello et al. (2024). Following Lee and Solon (2009),
we use the PSID core sample, corresponding to the Survey Research Center component,
and define the income measure as family income, which allows us to include both male
and female children. We exclude individuals with only zero or missing income values.
All dollar values are adjusted to 1968 dollars using the CPI. To address nonpositive
incomes, we bottom-code them at the sample 1st percentile, which affects 0.12% of the
observations in the raw PSID data. We consider the lifetime span from ages 20 to 60.

The family characteristics in our analysis are drawn from the rich data provided by
the PSID and are organized into several domains. Education is measured by years of
schooling completed and whether the household head received additional training be-
yond standard school or college. Regional location follows the PSID’s classification into
Northeast, North Central, South, or West. Family structure includes the birth order of
the children, the father’s age at first birth, and we leverage the PSID’s intergenerational
mapping to incorporate the number of offspring per father. Assets are captured through
indicators of housing and business ownership. Demographics include race (classified as
White or Non-White), sex of the children (given our focus on fathers), religion, and age
at the time of interview. While the PSID offers a broader set of variables, we focus on
these selected characteristics to ensure consistency and availability across survey waves.

Based on this available data, we construct the characteristics predictive of income pro-
files and parental income covariance, namely, Xct, X f t, and X f t j. This specification must
account for three key requirements: handling missing data in observables, incorporat-
ing the dynamics of the income process, and satisfying Assumptions 1-NP and 2-NP.
To address the first, we summarize variables over the lifetime span (ages 20–60) using
averages for time-varying characteristics (excluding education), modes for religion and
region, and the maximum value for education.
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To accurately model yearly income as a function of covariates, it is essential to incor-
porate the dynamics of the income process and capture relevant empirical patterns. To
this end, we closely follow the covariate specification in Mello et al. (2024). Specifically,
we include a quartic polynomial in age to account for concavities and nonlinearities in
income profiles. For the child generation, we incorporate a noisy proxy for parental per-
manent income, defined as the three-year average of log family income when the child
was aged 15–17. If family income data during this period is insufficient, we use the clos-
est available three-year window to ages 15–17. Additionally, we include interactions of
this noisy proxy and parental education with a quadratic polynomial in age to capture
the greater variability in income growth at younger ages and the typically faster income
growth observed among children from high-income families.

Our covariate specification is designed to satisfy Assumption 1-NP.i by construction,
while also making the remaining assumptions plausible in practice, although not guaran-
teed to hold. To satisfy Assumption 1-NP.i, we merge X f t and Xc j such that their non-
overlapping components

(
X f t ∩ Xc j

)c
= {age f t, agec j}, are both deterministic. In doing

so, we also include in X f t the noisy measure of parental permanent income along with
its interaction with age. This time-invariant measure serves as a relevant predictor in the
presence of missing income data, helping to compensate for the absence of income leads
and lags. Moreover, it enhances the first-step estimation of income profiles (and parental
income covariance), which is fundamentally a prediction task. Finally, to construct X f t j,
we merge X f t and X f j, ensuring

(
X f t ∩ X f t j

)c
= {age f j}. The current specification of

the covariates ensures that Assumption 1-NP.i is satisfied by construction; that is, the
covariates used to predict children’s income satisfy:
E

[
Yct | Xct, Xc j, X f j

]
= E [Yct | Xct] for t, j = 1, . . . ,T, and those used to predict fa-

thers’ income satisfy E
[
Y f t | X f t, X f t j, Xc j

]
= E

[
Y f t | X f t

]
for X f j ⊂ X f t j, t, j = 1, ...T.

This follows from the complements of the intersections,
(
X f t ∩ X f t

)c
= {age f t, agec j}

and
(
X f t ∩ X f t j

)c
= {age f j}, consisting solely of age, which is deterministic and thus do

not add stochastic variation beyond what is captured by Xct and X f t.
Our covariate specification further enhances the plausibility of the remaining assump-

tions in practice. The inclusion of an interaction between parental permanent income
and age, for example, strengthens the orthogonality condition between children’s in-
come prediction errors and parental permanent income required by Assumption 1-NP.ii.
In Section III.D, we develop formal tests to empirically evaluate Assumptions 1-NP.ii
and 1-NP.iii.

The dimensionality of the covariate set reflects the trade-off between the plausibility
of the missing-at-random assumption and the boundedness of the propensity scores in
Assumption 2-NP. While increasing the dimension of Xgt, can make the conditional in-
dependence Yct ⊥ Dct|Xct more plausible, it may reduce the likelihood that the propensity
score remains bounded away from zero. Nonetheless, it is not merely the dimensional-
ity, but rather the informativeness of the covariates that determines whether missingness
is conditionally at random. In other words, we aim to control for the relevant features
such that, conditional on them, the missingness of annual income occurs conditionally
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at random. While the MAR conditions in Assumptions 2-NP.i and 2-NP.iii cannot be
directly tested from observed data, the boundedness conditions in Assumptions 2-NP.ii
and 2-NP.iv can be assessed informally through visual inspection.

Table 2 provides summary statistics for socioeconomic characteristics of children and
their fathers revealing important intergenerational patterns in socioeconomic character-
istics. Fathers exhibit higher mean logged annual income (9.39 vs. 9.18) and home
ownership rates (88% vs. 67%), while children show greater educational attainment
(mean 13.7 vs. 12.2 years) and additional training participation (19% vs. 12%). Both
generations share identical rates of business ownership (16% for father) and white com-
position (91%), though fathers report higher religious affiliation (92% vs. 83%). Half of
the children are female, reflecting a balanced gender distribution. The median birth or-
der indicates that most families in the data have two or more children, with relatively few
only children. The mean and median values for the proxy of permanent income closely
match those of annual income, but with less variation and a narrower range, suggesting
that especially low incomes tend to occur outside of midlife. Most fathers had their first
child around age 25. Regional distributions show similar patterns across generations,
with children slightly more concentrated in the South (30% vs. 27%) and fathers slightly
more in the Northeast (23% vs. 22%).

Table 2—: Summary Statistics for Children and Fathers

Children Fathers

Variable Mean Median SD Min Max Mean Median SD Min Max

Annual Income 9.18 9.27 0.90 -1.42 13.8 9.39 9.46 0.79 -1.42 12.6
Proxy of Permanent Income - - - - - 9.38 9.42 0.53 7.30 11.3
Education Level 13.70 14.00 2.61 0.00 17.0 12.20 12.00 3.20 0.00 17.0
House Ownership 0.67 0.76 0.30 0.00 1.00 0.88 1.00 0.27 0.00 1.00
Business Ownership 0.16 0.05 0.23 0.00 1.00 0.16 0.00 0.28 0.00 1.00
Additional Training 0.19 0.00 0.39 0.00 1.00 0.12 0.00 0.33 0.00 1.00
Religion 0.83 1.00 0.38 0.00 1.00 0.92 1.00 0.28 0.00 1.00
White 0.91 1.00 0.28 0.00 1.00 0.91 1.00 0.28 0.00 1.00
Sex 0.50 1.00 0.50 0.00 1.00 - - - - -
Birth Order 2.19 2.00 1.26 1.00 8.00 - - - - -
Northeast Region 0.22 0.00 0.42 0.00 1.00 0.23 0.00 0.42 0.00 1.00
South Region 0.30 0.00 0.46 0.00 1.00 0.27 0.00 0.45 0.00 1.00
West Region 0.19 0.00 0.39 0.00 1.00 0.17 0.00 0.38 0.00 1.00
Age at First Child - - - - - 26.30 25.00 5.08 16.00 44.0

The income measures exhibit tighter dispersion for fathers, with smaller standard de-
viations (0.79 vs. 0.90 for annual income). Educational attainment shows greater vari-
ability among fathers (SD 3.20 vs. 2.61), potentially reflecting cohort differences in
educational access. Fathers tend to have higher ownership rates, with a median home
ownership of 1 compared to 76% for children. The regional distributions are remark-
ably consistent across generations, with all regional variables showing similar summary
statistics. After outlining these descriptive results, we shift to the core investigation of
intergenerational income persistence.
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To assess the orthogonality conditions, we implement the two locally robust proposed
tests, and for both tests, the null hypothesis is not rejected with our dataset, supporting
the plausibility of the assumptions.

Table 3 presents the estimation results of intergenerational elasticity in the United
States from the PSID core sample using alternative estimators. The estimation proce-
dure employs XGBoost Regression to model income profiles for both generations and
estimate conditional covariances of parental income, while logistic regression estimates
the propensity scores. The key distinction between the LR and plug-in machine learn-
ing estimators lies in their moment conditions: the LR approach utilizes the orthogonal
moment that accounts for the first-step influence function, whereas the plug-in version
relies solely on the identifying moment without such correction. For the mid-life income
estimator, fathers’ permanent income is proxied using a three-year average of log family
income when the child was aged 15–17. Children’s income is represented by a single
random draw from their midlife earnings (years 25–33, following Solon (1992)). The
life-cycle estimator maintains the same paternal income measure but measures children’s
permanent income by summing predicted earnings profiles from OLS Regression. Our
estimation procedure involves two key steps: hyperparameter tuning via 5-fold cross-
validation followed by cross-fitting (using 10 folds) to mitigate overfitting.

Our locally robust estimator yields an IGE of 0.69 with a 95% confidence interval of
(0.575, 0.804). This result aligns closely with the findings in Mazumder (2016), which
suggest an IGE for family income in the U.S. likely exceeding 0.6, indicating relatively
low intergenerational mobility. Additionally, our result falls within the range of 0.55 to
0.74 reported by Mitnik et al. (2015) using a nonparametric approach for traditional IGE.

Table 3—: Estimation Results of Intergenerational Elasticity in the
United States Using Alternative Estimators

Locally Robust Naive ML Life-cycle Mid-life Income
0.690 0.596 0.508 0.378

(0.575, 0.804) (0.502, 0.690) (0.475, 0.541) (0.273, 0.484)
Sample size consists of 1138 child-father pairs drawn from the PSID core sample (Survey Research
Center component), 25,929 child observations, and 16,033 father observations. 95% confidence in-
tervals clustered at the family level are reported in parenthesis.

The Naive ML estimator yields an IGE of 0.596 (95% CI: (0.502, 0.690)), considerably
lower than the Locally Robust estimate. As expected from our simulations (Table 1),
the plug-in estimator suffers from finite-sample bias, which—together with estimation
error, results in undercoverage. The differences between the locally robust and plug-
in ML estimates and confidence intervals highlight the importance of employing locally
robust moment conditions to ensure valid inference for the IGE. These differences in both
point estimates and confidence intervals illustrate how conventional machine learning
approaches, while useful for prediction, may require robustness corrections for proper
statistical inference.
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Our results reveal important differences in estimator performance: while the Life-
Cycle (LC) estimator underestimates the IGE, it remains closer to the Locally Robust
(LR) benchmark, whereas the Mid-life Income (MI) estimator exhibits substantial down-
ward bias. Specifically, the LC estimator yields an IGE of 0.508. In contrast, the MI es-
timator produces a markedly lower IGE of 0.378, significantly underestimating the true
intergenerational elasticity.

Our results underscore the key advantages of the locally robust (LR) estimator. The
contrast between the LR estimate and those from alternative approaches—0.51 for the
life-cycle (LC) estimator and 0.38 for the mid-life income (MI) estimator—highlights
the importance of our method for consistent estimation. Additionally, the comparison
with the naive ML estimate of 0.60 further motivates the construction of a locally robust
moment over the plug-in approach, particularly with regard to coverage. Taken together,
these findings highlight the importance of identification, combined with local robustness,
for studying income mobility through the lens of the intergenerational elasticity.

VI. Conclusions

The primary challenge in estimating the intergenerational elasticity (IGE) arises from
the unavailability of complete income profiles. Consequently, researchers have relied
on midlife income averages, which introduces measurement error, leading to downward-
biased estimates. While recent methodological advances have mitigated some of this
attenuation bias, they overlook a more fundamental issue: the absence of formal iden-
tification of the IGE when income data is incomplete. This is not merely a technical
concern; without proper identification, no consistent estimator exists (Gabrielsen, 1978),
which undermines both the reliability and comparability of IGE estimates.

This paper addresses this issue by providing valid inference for the intergenerational
elasticity through three key contributions: (i) the identification of the IGE in the presence
of incomplete income data; (ii) the development of a consistent, locally robust estimator
that corrects for first-step prediction errors; and (iii) valid inference that accounts for
uncertainty from the first-stage estimation of nuisance parameters.

First, we establish nonparametric identification by leveraging family characteristics
under standard missing at random assumptions. Moving beyond the conventional gener-
alized error-in-variables model, we instead exploit the structural definition of permanent
income as the average of annual earnings during working life. This approach allows us to
recover the intergenerational elasticity from conditional moments of parental and child
incomes.

Second, we develop a consistent and locally robust estimator by constructing an or-
thogonal moment function. This ensures that the machine learning estimation of nui-
sance parameters, such as conditional expectations, have no local effect on the IGE esti-
mate. Finally, we establish the estimator’s asymptotic normality.

Our framework enables comparable IGE estimates across time and place in the pres-
ence of incomplete income data. Importantly, our study complements rather than re-
places rank-based measures by enabling valid inference for contexts where the IGE is
more appropriate, such as cross-country comparisons or analyses of absolute mobility
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trends. By addressing key methodological challenges, our approach establishes a robust
foundation for studying income persistence, enhancing the reliability and interpretability
of mobility research across diverse economic settings.

Our simulation analysis illustrates the superior finite-sample performance of the lo-
cally robust estimator, which exhibits negligible bias and near-nominal coverage rates
across different scenarios, outperforming alternative approaches that exhibit both higher
bias and poor coverage.

Using the PSID core sample, our approach yields an intergenerational elasticity of 0.69
for the United States, delivering a reliable and comparable measure of income persistence
across generations. This results aligns with previous evidence derived from long-term
parental income averages, which suggests that the U.S. IGE is likely above 0.6.

Our study highlights three important directions for future research. First, our identifi-
cation strategy requires longitudinal data that are often unavailable in developing coun-
tries, where understanding income persistence is most relevant. Future work should
establish alternative identification results for data-scarce environments.

Second, the shift in the literature toward rank-based measures has been partly moti-
vated by concerns about the nonlinear relationship between log child income and log
parent income. Accordingly, future research should study identification and locally ro-
bust estimation for a nonlinear version of the intergenerational elasticity. One promising
direction involves estimating the regression of child permanent income on parent perma-
nent income in levels. A quantile-specific elasticity can then be constructed by multi-
plying the marginal effect at each point in the parental income distribution by the ratio
of average child to parent income at that quantile. This would provide a richer, distribu-
tional perspective on income persistence and allow researchers to quantify how mobility
varies across the income ladder patterns while avoiding the limitations of log-linear spec-
ifications.

Finally, a central empirical challenge in economics is that many key parameters, from
models of life-cycle income, savings, and consumption to measures of individual well-
being, depend on latent lifetime outcomes, while only partial observations at certain ages
are typically available. The methods proposed in this paper open the door for applications
in other contexts with partially observed outcomes, providing a flexible framework for
addressing similar empirical challenges.
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Böhlmark, A. and Lindquist, M. J. (2006). Life-cycle variations in the association be-
tween current and lifetime income: replication and extension for sweden. Journal of
Labor Economics, 24(4):879–896.

Bratberg, E., Nilsen, Ø. A., and Vaage, K. (2007). Trends in intergenerational mobility
across offspring’s earnings distribution in norway. Industrial Relations: A Journal of
Economy and Society, 46(1):112–129.

Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., and Robins, J. M.
(2022). Locally robust semiparametric estimation. Econometrica, 90(4):1501–1535.

Chetty, R., Hendren, N., Kline, P., and Saez, E. (2014). Where is the land of opportunity?
the geography of intergenerational mobility in the united states. The Quarterly Journal
of Economics, 129(4):1553–1623.

Corak, M. (2013). Income inequality, equality of opportunity, and intergenerational mo-
bility. Journal of Economic Perspectives, 27(3):79–102.

Couch, K. A. and Lillard, D. R. (1998). Sample selection rules and the intergenerational
correlation of earnings. Labour Economics, 5(3):313–329.

Dahl, M. W. and DeLeire, T. (2008). The association between children’s earnings and fa-
thers’ lifetime earnings: estimates using administrative data. University of Wisconsin-
Madison, Institute for Research on Poverty Madison.

de Wolff, P. and van Slijpe, A. R. (1973). The relation between income, intelligence,
education and social background. European Economic Review, 4(3):235–264.

Fitzgerald, J. (2011). Attrition in models of intergenerational links in health and eco-
nomic status in the psid. The BE Journal of Economic Analysis & Policy, 11(3):1–61.

Fitzgerald, J., Gottschalk, P., and Moffitt, R. A. (1998). An analysis of sample attrition
in panel data: The michigan panel study of income dynamics.

Francesconi, M. and Nicoletti, C. (2006). Intergenerational mobility and sample selec-
tion in short panels. Journal of Applied Econometrics, 21(8):1265–1293.

Freeman, R. B. (1978). Black economic progress after 1964: who has gained and why?
Technical report, National Bureau of Economic Research.



33

Friedman, M. (1957). The permanent income hypothesis. In A theory of the consumption
function, pages 20–37. Princeton University Press.

Gabrielsen, A. (1978). Consistency and identifiability. Journal of Econometrics,
8(2):261–263.

Haider, S. and Solon, G. (2006). Life-cycle variation in the association between current
and lifetime earnings. American economic review, 96(4):1308–1320.

Halvorsen, E., Ozkan, S., and Salgado, S. (2022). Earnings dynamics and its intergen-
erational transmission: Evidence from norway. Quantitative Economics, 13(4):1707–
1746.

Hauser, R. M., Sewell, W. H., and Lutterman, K. G. (1975). Socioeconomic background,
ability, and achievement.

Hausman, J. (2001). Mismeasured variables in econometric analysis: problems from the
right and problems from the left. Journal of Economic perspectives, 15(4):57–67.

Heckman, J. J., Lochner, L. J., and Todd, P. E. (2006). Earnings functions, rates of return
and treatment effects: The mincer equation and beyond. Handbook of the Economics
of Education, 1:307–458.

Heidrich, S. (2016). A study of the missing data problem for intergenerational mobility
using simulations. Technical Report 930, Umeå University, Department of Economics.

Jappelli, T. and Pistaferri, L. (2010). The consumption response to income changes.
Annu. Rev. Econ., 2(1):479–506.

Lee, C.-I. and Solon, G. (2009). Trends in intergenerational income mobility. The review
of economics and statistics, 91(4):766–772.

Lillard, L. A. and Panis, C. W. (1998). Panel attrition from the panel study of income
dynamics: Household income, marital status, and mortality. Journal of Human Re-
sources, pages 437–457.

Lubotsky, D. and Wittenberg, M. (2006). Interpretation of regressions with multiple
proxies. The Review of Economics and Statistics, 88(3):549–562.

Mazumder, B. (2005). Fortunate sons: New estimates of intergenerational mobility in the
united states using social security earnings data. Review of Economics and Statistics,
87(2):235–255.

Mazumder, B. (2016). Estimating the intergenerational elasticity and rank association
in the united states: Overcoming the current limitations of tax data. In Inequality:
Causes and consequences, pages 83–129. Emerald group publishing limited.

Mello, U., Nybom, M., and Stuhler, J. (2024). A lifecycle estimator of intergenerational
income mobility. Technical report, Working Paper.



34

Mitnik, P., Bryant, V., Weber, M., and Grusky, D. B. (2015). New estimates of inter-
generational mobility using administrative data. Statistics of Income Division working
paper, Internal Revenue Service.

Mogstad, M. and Torgovitsky, A. (2024). Instrumental variables with unobserved het-
erogeneity in treatment effects. In Handbook of Labor Economics, volume 5, pages
1–114. Elsevier.

Mogstad, M. and Torsvik, G. (2023). Family background, neighborhoods, and intergen-
erational mobility. Handbook of the Economics of the Family, 1(1):327–387.

Nybom, M. and Stuhler, J. (2016). Heterogeneous income profiles and lifecycle bias in
intergenerational mobility estimation. Journal of Human Resources, 51(1):239–268.

Nybom, M. and Stuhler, J. (2017). Biases in standard measures of intergenerational
income dependence. Journal of Human Resources, 52(3):800–825.

Schoeni, R. F. and Wiemers, E. E. (2015). The implications of selective attrition for
estimates of intergenerational elasticity of family income. The Journal of Economic
Inequality, 13(3):351–372.

Semenova, V., Goldman, M., Chernozhukov, V., and Taddy, M. (2023). Inference on
heterogeneous treatment effects in high-dimensional dynamic panels under weak de-
pendence. Quantitative Economics, 14(2):471–510.

Solon, G. (1992). Intergenerational income mobility in the united states. The American
Economic Review, pages 393–408.

Stuhler, J. et al. (2018). A review of intergenerational mobility and its drivers. Publica-
tions Office of the European Union, Luxembourg.

Tsai, S.-L. (1983). Sex differences in the process of stratification. The University of
Wisconsin-Madison.

Zimmerman, D. J. (1992). Regression toward mediocrity in economic stature. The
American Economic Review, pages 409–429.

Appendix A

A1. Definition of Permanent Income

We define permanent income as the average log annual income over a specific lifetime
period from t = 1 to T:

YP
g B

1
T

T∑
t=1

Ygt, g ∈ {c, f },(A1)
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where Ygt is log annual income in year t, with t = 1 indicating the start age and T the
number of years covered. A key advantage of this formulation is that it facilitates the
identification of the Intergenerational Elasticity (IGE). Specifically, under this definition,
permanent income depends only on the marginal distributions of log annual income,
which can be partially observed and consistently estimated from the data. This property
is particularly valuable in the presence of missing data, where income is not available for
all individuals or years. The linearity of YP

g allows for the interchange of the summation
and expectation operators, which is crucial for identification.

To illustrate this point, notice that under standard missing at random (MAR) and con-
ditional mean independence assumptions, we can recover E

[
YP

g

]
using observed condi-

tional means:

E
[
YP

g

]
= E

 T∑
t=1

Ygt


=

T∑
t=1

E
[
Ygt

]
=

T∑
t=1

E
[
E

[
Ygt | Xgt

]]
=

T∑
t=1

E
[
E

[
Ygt | Xgt,Dgt = 1

]]
= E

 T∑
t=1

E
[
Ygt | Xgt,Dgt = 1

] ,
where Xgt represents family characteristics predictive of annual income for generation g
at time t, and Dgt is an indicator equal to 1 if Ygt is observed and 0 otherwise. The MAR
assumption ensures that E

[
Ygt | Xgt

]
= E

[
Ygt | Xgt,Dgt = 1

]
, allowing us to impute

missing values using observed data.

In contrast, consider an alternative definition of permanent income based on the log of
average absolute income:

YPL
g B log

 1
T

T∑
t=1

eYgt

 ,
where eYgt denotes absolute annual income. This formulation complicates identification
of the IGE because the nonlinearity introduced by the logarithm prevents expectations
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from decomposing into period-by-period components. By Jensen’s inequality, we have

E
[
YPL

g

]
= E

log

 1
T

T∑
t=1

eYgt


 , 1

T

T∑
t=1

E
[
Ygt

]
= E

[
YP

g

]
.

Thus, the left-hand side requires taking the expectation over the full (unobserved) joint
distribution of the vector

(
Yg1, . . . ,YgT

)
, which captures all dependencies across time pe-

riods. Accordingly, the expectation E
[
log

(∑
t eYgt

)]
cannot be reduced to the mean of

conditional expectations of individual Ygt. Instead, it requires knowledge (or estimation)
of the entire joint distribution of

(
Yg1, . . . ,YgT

)
to account for correlations and higher-

order moments across periods. Under missing data, this would necessitate stronger as-
sumptions about the joint distribution and potentially complex imputation methods for
the full vector of incomes, rather than period-by-period conditional means. This makes
identification infeasible with our strategy, which exploits only marginal conditional ex-
pectations and covariances from partially observed data.

When applied to the life-cycle estimator of Mello et al. (2024), our definition yields re-
sults that are virtually identical to those obtained using the log-sum specification. In their
framework, predicted log annual incomes for children are first exponentiated to obtain
absolute incomes, which are then averaged across years and logged to form permanent
income. The IGE is subsequently estimated by regressing this measure on parental aver-
age log income. Table A1 depicts that the resulting IGE estimates under their log-average
definition (YPL

c ) are nearly indistinguishable from those obtained using our average-log
definition (YP

c ).

Table A1—: Estimation Results of Intergenerational Elasticity in the
United States Using Alternative Permanent Income Definition for the
Life-cycle Estimator

Life-cycle (log-avg) Life-cycle (avg-log)
0.508 0.505

(0.475, 0.541) (0.473, 0.538)
Sample size consists of 1,138 child-father pairs drawn from the PSID core sample (Survey
Research Center component), 25,929 child observations, and 16,033 father observations. 95%
confidence intervals clustered at the family level are reported in parentheses.

This close correspondence can be understood by rewriting the log-mean as

log

 1
T

T∑
t=1

eYgt

 = log

 T∑
t=1

eYgt

 − log(T )
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= log

eYP
g

T∑
t=1

eYgt−YP
g

 − log(T )

= YP
g + log

 T∑
t=1

eYgt−YP
g

 − log(T )

= YP
g + log

 1
T

T∑
t=1

eYgt−YP
g

 .
When annual log income deviates minimally from its average (Ygt − YP

g ≈ 0), then

eYgt−YP
g ≈ 1 for all t. Consequently, the average inside the log term is approximately

1, so that

YPL
g = log

 1
T

T∑
t=1

eYgt

 ≈ YP
g + log(1)

= YP
g ,

explaining the similarity in IGE estimates of the life-cycle estimator.

A2. The Mid-life Income Estimator

The standard approach to estimating intergenerational elasticity, which we label the
mid-life income (MI) estimator, proxies permanent income by averaging (log) annual
income snapshots around mid-life, primarily for fathers, though also applicable to chil-
dren. This strategy is motivated by the errors-in-variables (EIV) framework, building
on the permanent income hypothesis of Friedman (1957), which posits that observed in-
come depends on a permanent and a transitory component. By averaging multiple years
of income, the MI estimator isolates the permanent component, reducing the impact of
transitory fluctuations on intergenerational elasticity estimates.

Following the seminal work of Solon (1992), this approach has become standard for
measuring fathers’ permanent income, with researchers using a simple average of (log)
yearly income. Solon’s key contribution was showing that averaging multiple income
snapshots reduces attenuation bias, with the bias decreasing as the number of periods
averaged increases. However, as noted by Becker and Tomes (1986), earlier studies
(de Wolff and van Slijpe, 1973; Hauser et al., 1975; Freeman, 1978; Tsai, 1983) had al-
ready employed income averaging to mitigate response errors and transitory components,
laying the groundwork for this practice.

Using mid-life observations to proxy permanent income is rationalized by the gener-
alized error-in-variables (GEIV) model (Haider and Solon, 2006)

Ygt = λtYP
g + vgt, E

[
vgtYP

g

]
= 0, g ∈ c, f , t = 1, . . . ,T,(A2)
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where YP
g is permanent income, λt captures varying persistence over the life cycle, and

vgt is an age-specific shock. As suggested by equation (A2), annual income at younger
and older ages is a noisier measure of permanent income compared to mid-life income,
as permanent income is less persistent during these periods (indicated by a smaller λt).
This phenomenon, known as life-cycle bias, can be mitigated by measuring income dur-
ing mid-life, when persistence approaches one (Haider and Solon, 2006). Extensive ev-
idence supports this approach, demonstrating that mid-life income yields more accurate
estimates of permanent income for fathers (e.g., Böhlmark and Lindquist (2006); Nybom
and Stuhler (2017)).

For children’s permanent income, standard practice uses a single mid-life observation,
as measurement error in the dependent variable (usually) only affects efficiency, while
error in the independent variable causes attenuation bias (Hausman, 2001).

Formally, the MI estimand
(
βMI

)
corresponds to the slope coefficient of the projection

of the average child’s (log) income during mid-life
(
ỸP

c

)
on the average parental (log)

income during mid-life
(
ỸP

f

)
:

ỸP
c = α

MI + βMIỸP
f + uMI , E

[
uMI

(
1, ỸP

f

)′]
= 0,(A3)

ỸP
g B

1
Tg

∑
j∈Mg

Yg jDg j, g ∈ {c, f },

where Dg j = 1 when Yg j is observed and zero otherwise,1 Mg is a set of pre-defined
mid-life years for generation g,2 and Tg B

∑
j∈Mg Dg j is the number of years used for

the average. Accordingly, the closed-form expression for the MI estimand

βMI =
E

[(
ỸP

c − E
[
ỸP

c

]) (
ỸP

f − E
[
ỸP

f

])]
E

[(
ỸP

f − E
[
ỸP

f

])2
] B

E
[
ỹP

c ỹP
f

]
E

[(
ỹP

f

)2
] ,(A4)

where low-case letters denote the random variables in deviations from their population
mean. Thus, the corresponding MI estimator is given by

β̂MI
n =

En
[(

ỸP
c − En

[
ỸP

c

]) (
ỸP

f − En
[
ỸP

f

])]
En

[(
ỸP

f − En
[
ỸP

f

])2
] ,(A5)

1While Dg j = 1 is formally defined as indicating when Yg j is observed, in practice, it also implicitly requires that Yg j
is used for estimation. This distinction arises because empirical studies often sample parental income selectively—for
example, by focusing on log annual income during midlife (e.g., ages 30–50) to reduce lifecycle bias or measurement
error. Thus, even if income is observed in other years, it may be excluded from estimation due to sampling design.
This refinement clarifies that Dg j reflects both data availability and inclusion criteria, ensuring consistency with standard
empirical approaches.

2While some papers define parental mid-life according to their offspring’s age (Chetty et al., 2014; Blanden et al.,
2014), others use parental age (Björklund and Jäntti, 1997; Mazumder, 2005), soM f can differ fromMc.
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where En [X] B 1
n
∑n

i=1 Xi is the empirical expectation operator.
To study identification of the MI estimand, we now state its underlying assumptions.

The first one begins by imposing that the GEIV model of equation (A2), which moti-
vates the MI estimator, is correctly specified and assumes that persistency of permanent
income equals 1 during mid-life. This assumption serves the crucial function of mapping
unobserved lifetime income to (partially) observed (log) annual income.

Assumption 1-MI. (Annual Income Process) The relationship between annual and per-
manent income is governed by

Ygt = λtYP
g + vgt, E

[
vgtYP

g

]
= 0, g ∈ {c, f }, t = 1, ...,T,

λt = 1,∀t ∈ Mg, g ∈ {c, f }.

where λt captures that the persistence of permanent income may vary over the life-cycle
period, and vgt is an age shock.

While empirical evidence suggests that λt approaches one during mid-life (Haider and
Solon, 2006; Nybom and Stuhler, 2016), the assumption that λt equals one in this pe-
riod is unlikely to hold. This motivates the use of optimally weighted income measures
(Lubotsky and Wittenberg, 2006), which provide more accurate estimates than simple
averages. Crucially, even if λt = 1 during mid-life, the MI estimator remains inconsis-
tent for the IGE(Nybom and Stuhler, 2016).

The model in equation (A3), together with Assumption 1-MI, involves a random
i.i.d sample of W̃ =

(
Yc ⊙ Dc,Y f ⊙ D f , Dc, D f

)
,3 unobserved components including:

(i) the time-varying shocks vgt for both children and fathers, indexed by g ∈ c, f and
t = 1, . . . ,T ; (ii) the permanent income YP

g of both generations g ∈ c, f ; and (iii) the
error term uMI associated with the MI estimator. The model parameters consist of the
parameter of interest βMI , and the nuisance parameter αMI .4 To evaluate whether βMI

identifies β0, we now introduce zero conditional mean restrictions involving the observed
and unobserved components in this setting.

Assumption 2-MI. (Conditional Mean Independence) The following conditional mean
restrictions hold

E
[
vctv f j

∣∣∣Dct,D f j
]
= 0, t ∈ Mc, j ∈ M f ,

E
[
v f jYP

c

∣∣∣D f j
]
= 0, j ∈ M f ,

E
[
v f tYP

f |D f t,D f j
]
= 0, t j ∈ M f ,

E
[
vg j|Dg j

]
= 0, g ∈ {c, f }, j ∈ M j.

3Because the MI estimator does not incorporate family characteristics in its estimation procedure, we abstract from
their observation in our analysis.

4While {λt}
T
t=1 would typically be nuisance parameters in an unrestricted model, our framework does not classify

them as such, as we impose the restriction λt = 1 during mid-life.
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Assumption 2-MI imposes a set of orthogonality conditions involving age shocks,
missingness indicators, and unobserved permanent income. The first condition states
that, conditional on the missingness indicators for child and parent income, mid-life age
shocks to children and parents are mean independent. The second condition requires
that parental age shocks during mid-life are mean independent of the child’s permanent
income, conditional on the missingness status of parental income. The third condition
assumes that, given the missingness indicators for a tuple of years of parental income,
age shocks are mean independent of the parent’s permanent income.5 Lastly, the fourth
condition states that observed age shocks have zero mean, conditional on the missingness
status of the corresponding annual income observation.

Previous work (e.g., Couch and Lillard (1998); Mazumder (2005); Heidrich (2016))
has shown that the MI estimator does not perform well. Furthermore, there is an ex-
tensive literature discussing its sources of bias (e.g., Solon (1992); Mazumder (2005);
Nybom and Stuhler (2016)). We now briefly examine the sources of bias that prevent the
MI estimator from being consistent. As shown in Corollary 1, the probability limit of
β̂MI

n takes the form:

β̂MI
n

p
→

β0E
[(

YP
f − E

[
YP

f

])2
]
+

(c)︷                                     ︸︸                                     ︷
1
Tc

∑
t

E
[
YP

f vct
∣∣∣Dct = 1, t ∈ Mc

]
×

(d)︷        ︸︸        ︷
pc (t ∈ Mc)

E
[(

YP
f − E

[
YP

f

])2
]
+

1
T 2

f

∑
t

∑
j

E
[
v f tv f j

∣∣∣D f t = 1,D f j = 1, {t, j} ∈ M f
]

︸                                                             ︷︷                                                             ︸
(a)

× p f
(
{t, j} ∈ M f

)︸              ︷︷              ︸
(b)

.

(A6)

The downward bias by measurement error highlighted by Solon (1992) and Mazumder
(2005) corresponds to component (a) in equation (A6). Consider rewriting (a) as

1
T 2

f

∑
t

E
[
v2

f t

∣∣∣D f t = 1,D f j = 1, {t, j} ∈ M f
]
+

2
T 2

f

∑
t

∑
j,t

E
[
v f tv f j

∣∣∣D f t = 1,D f j = 1, {t, j} ∈ M f
]
,

(A7)

where the first component is the variance of the transitory income component, causing
the attenuation bias shown is Solon (1992), while the second term comprises the autore-
gressive nature of the transitory component illustrated in Mazumder (2005). This term
rationalizes why even the 10-year average is not enough for the attenuation bias to vanish
due to the transitory component of income being highly serially correlated (Mazumder,
2005). As T f grows (more years are used for the average), the first component in the last
display might vanish. However, the second one does not, because the number of covari-
ances in the second term is T 2

f − T f . Consequently, the second term in the last display

5By the law of iterated expectations, this condition implies that age shocks are uncorrelated with permanent income
for the parental generation, as already assumed in Assumption 1-MI, but the reverse does not necessarily hold.
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will not disappear when the transitory income component is highly serially correlated.

Component (b) captures the sensitivity of the IGE estimates to low, zero, and missing
income documented in the literature. There is extensive evidence that IGE estimates are
not robust to how extreme and missing incomes are treated (Couch and Lillard, 1998;
Dahl and DeLeire, 2008; Chetty et al., 2014; Nybom and Stuhler, 2016). When observa-
tions with zero and low income are dropped, the probability of observing a given tuple
of years for parents changes. Moreover, not observing permanent income also affects the
probability of observing a given tuple of years. If we were to observe permanent income,
components (d) and (b) in equation (A6) would be equal to 1, and would not induce bias.

The sensitivity of the IGE to sample inclusion rules is also comprised in component
(d). Couch and Lillard (1998) show with empirical evidence that the MI estimator is sen-
sitive to different sample inclusion rules. As noted by Francesconi and Nicoletti (2006),
studies usually restrict their analysis to children from specific birth cohorts. The upper
bound for the birth cohort is required to ensure that children’s socioeconomic status is
observed as long as possible so their observed status is a reliable measure of long-run
permanent status. Imposing such a restriction mechanically affects the probability of
observing income in a given year, which corresponds to component (b) in equation (A6).

Even when using the same data, changes in the definition of mid-life alter the es-
timand in equation (A4), further limiting comparability. The transitory component of
children’s income depending on parental income is encompassed by (c) in equation (A6).
Halvorsen et al. (2022) highlight that children from affluent families might experience
faster income growth, which would cause the steepness of the income trajectory to de-
pend on parental permanent income. Thus, the correlation between age shocks to chil-
dren’s (log) annual income and parental permanent income induces bias in estimating
the IGE.

Component (d) in equation (A6) captures that the estimate of the IGE depends both on
the number of years used to measure children’s income and the selected year(s). Mello
et al. (2024) provide evidence that using β̂MI

n to estimate the IGE is sensitive to the span
of ages where the child generation is observed and the number of income observations
available for each individual. The first finding is captured by the pre-defined mid-life
years (Mc) used to proxy children’s permanent income. The second one, by the cardi-
nality ofMc affecting the magnitude of component (d).

As shown in equation (A28), if we were to drop the assumption that λt = 1 during
mid-life, our inconsistency result would also capture the life-cycle bias in estimating the
IGE. As previously mentioned, imposing λt = 1 allows us to obtain the closed-form
solution in equation (A6). However, relaxing this assumption allows our inconsistency
result to capture another source of bias discussed in the literature.
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A3. Proof of Proposition 1

We aim to characterize the population quantity identified by the MI estimand, defined
as

βMI =
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[(
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[
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]) (
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ỸP

f

])]
E

[(
ỸP
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where low-case letters denote the random variables in deviations from their population
mean. To this end, we derive closed-form expressions for the numerator and denominator
under Assumptions 1-MI and 2-MI. We start by analyzing the denominator:

E
[
ỹP
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,(A8)

where we have used the definition of average (log) income during mid-life as given in
equation (A3) in the second equality, and the fourth equality follows by Assumption
1-MI.

The first term in equation (A8) can be expressed as
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where the first equality follows from assuming λt = 1,∀t ∈ Mg for g ∈ {c, f } in As-
sumption 1-MI, and the second one by the definition of Tg B

∑
j∈Mg Dg j. As regards the

second term in equation (A8), it can be simplified as follows:
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where the fourth equality follows by the law of total probability.

The third term in equation (A8) equals zero by the law of iterated expectations (LIE)
and Assumption 2-MI
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Similarly, the fourth term in equation (A8) also equals zero by Assumption 2-MI and
LIE
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Finally, for the last term in equation (A8) we have
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where the last equality follows by Assumption 1-MI.

By plugging equations (A10), (A9), (A11), (A12), and (A13) into equation (A8), we
have
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c ỹP
f

]
= E

[(
YP

c − E
[
YP

c

]) (
YP

f − E
[
YP

f

])]
+

1
Tc

∑
t

E
[
YP

f vct
∣∣∣Dct = 1, t ∈ Mc

]
× pc (t ∈ Mc) .(A14)

We now analyze the denominator in equation (A4)
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The first term of equation (A15) can be expressed as
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The second and third terms in the last display equal zero by Assumption 1-MI, since
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and the fourth term
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By the same arguments as those of equation (A13), the last term in equation (A15) boils
down to
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By plugging equations (A16), (A17), (A18), and (A19) into equation (A15), we have

E
[(

ỹP
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Thus, by plugging equations (A14) and (A20) into (A4), we get
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To characterize the limit in probability of the MI estimator, defined as
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ỸP

f

])]
En

[(
ỸP
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we study the convergence in probability of each of its components. The numerator con-
verges in probability to
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ỹP

c ỹP
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where the convergence in probability follows by the Law of Large Numbers (LLN), the
first equality from equation (A14), and the second and third by equation (1). As regards
the denominator in equation (A5), it converges in probability to
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where the convergence in probability follows by the LLN, and the equality from equa-
tion (A20). Thus, by plugging equations (A21) and (A22) into (A4) and applying the
Continuous Mapping Theorem (CMT) yields
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A4. Equivalence with Previous Inconsistency Results

Corollary 1 encompasses previous formalizations of bias in estimating the IGE. In
particular, we first show that the inconsistency result in Solon (1992) is a particular case
of Corollary 1 under an additional assumption. We then show that the two inconsistency
results in Nybom and Stuhler (2016) are particular cases of Corollary 1 when variants of
Assumption 1-MI are considered, and Assumption 2-MI is relaxed.

We now show that equation (3) in Corollary 1 simplifies to the inconsistency result in
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(Solon, 1992, p. 400), if we further assume that parental permanent income is uncorre-
lated to child age shocks, for the observed years during mid-life. In particular, consider
assuming

Assumption 3-S.
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Then, under Assumptions 1-MI, 2-MI,and 3-S equation (A23) (which corresponds to
equation (3) in Corollary 1) boils down to
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which is the result in Solon (1992). The shape of the second term in the denomina-
tor of the last display depends on the assumptions of the transitory shock to parental
income. For instance, if we assume that is white noise, it boils down to V2

v /T f . Con-
versely, if we assume it follows a MA(1) it becomes

(
V2

v /T f
)
×

[
1 + 2θ

(
T f − 1

)
/T f

]
,

where θ denotes the first-order autocorrelation. Finally, if we assume a stationary AR(1)
process the second term in the denominator of the last display becomes

(
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v /T f
)
×[
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{
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f )/(1 − θ)
}
/
(
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)]
(see footnote 17 in Solon (1992)). We now

turn to contrasting Corollary 1 with more recent results.
There are two inconsistency results in Nybom and Stuhler (2016). Both of them im-

pose the additional assumption that income is measured in a single year during mid-life.
However, while the first result assumes an error-in-variables model, the second one as-
sumes a generalized error-in-variables model. By formalizing these assumptions, we
show that Corollary 1 encompasses both of these inconsistency results.

We first consider the inconsistency result in equation (2) in Nybom and Stuhler (2016).
For this purpose, consider the following alternative to Assumption 1-MI

Assumption 1-NS. (Annual Income Process) The relationship between annual and per-
manent income is governed by

Ygt = λtYP
g + vgt, E

[
vgt

]
= 0, g ∈ {c, f }, t = 1, ...,T,

λt = 1,∀t ∈ Mg, g ∈ {c, f }.
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Moreover, we further assume

Mg = Tg, g ∈ {c, f }
Dgt = 1 ∀t = Tg, g ∈ {c, f }.

That is, we assume that parental and child’s income are measured in a given year so
that every child and parent is observed in that year. Moreover, we assume that the age
shock to annual income has zero mean, and relax the assumption that transitory income
shocks are uncorrelated to parental permanent income. Furthermore, in their result, the
authors relax the conditional mean restrictions in Assumption 2-MI.

Since we are only using one observation for both parents and children, we have ỸP
c =

Yct and ỸP
f = Y f j, so that

E
[
ỹP

c ỹP
f

]
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YctY f j

]
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]
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]
E
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f

]
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]) (
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f
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f vct
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]
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]
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])2
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]
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]
,(A25)

and

E
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f
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]
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)2
]
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[
YP
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(A26)

Then, by equation (A25)

En
[
ỹP

c ỹP
f

] p
→ E

[
ỹP

c ỹP
f

]
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,

and by equation (A26)

En
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[(
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= E
[(

YP
f − E

[
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f

])2
]
+ E

[
v2

f t

]
+ 2E

[
YP

f v f t
]
,

so that, under Assumption 1-NS, equation (A23) boils down to

β̂MI
n

p
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[
YP

f v f t
] ,(A27)

which is equation (2) in Nybom and Stuhler (2016).
We now turn to the second inconsistency result, which in contrast to Assumption 1-MI,

assumes

Assumption 1’-NS. (Annual Income Process) The relationship between annual and per-
manent income is governed by

Ygt = λtYP
g + vgt, E

[
vgt

(
1,YP

g

)′]
= 0, g ∈ {c, f }, t = 1, ...,T.

where λt captures that the persistence of permanent income may vary over the life-cycle
period, and vgt is an age shock, uncorrelated by construction with YP

g . Moreover, we
further assumeMc = tc,M f = t f , Dct = 1 for t = tc, and D f t = 1 for t = t f .

That is, similar to Assumption 1-MI, we consider the linear projection of YP
g on Ygt

so that vgt is uncorrelated to YP
g by construction. Moreover, we relax the assumption of

λt = 1,∀t ∈ Mg, g ∈ {c, f } in Assumption 1-MI. Thus, we have that

E
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and
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so that
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Thus, under Assumption 1’-NS we have that equation (A23) becomes
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p
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] ,(A28)

which is equation (6) in Nybom and Stuhler (2016).

Appendix B: nonparametric Identification of the IGE and Local Robustness

B1. Proof of Theorem 1

To establish identification of the intergenerational elasticity, defined as

β0 =
E

[(
YP

c − E
[
YP

c

]) (
YP

f − E
[
YP

f

])]
E

[(
YP

f − E
[
YP

f

])2
] ,(B1)

we will express both the numerator and denominator into observable components. We
start by showing identification of the conditional means of permanent income for both
generations g ∈ {c, p}:

E
[
YP

g

]
= E

 T∑
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Ygt
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=

T∑
t=1

E
[
E

[
Ygt | Xgt,Dgt = 1
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= E
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B µP

g .(B2)

Turning attention to the numerator in equation (B1), we exploit Assumptions 1-NP and
2-NP to express this term as:
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where µgt(Xgt, 1) B E
[
Ygt | Xgt,Dgt = 1

]
for g ∈ {c, p}.

The first equality follows from the definition of the conditional means of permanent
income in equation (B2), while the second equality follows from the definition of per-
manent income together with the linearity of expectation. The prediction error of the
children’s annual income in the third equality is defined according to Assumption 1-
NP.ii. The fourth equality leverages the same assumption, which ensures that this error
is uncorrelated with parental permanent income and has zero mean. The fifth equality
exploits Assumption 1-NP.i, ensuring E

[
Yct | Xct, X f j

]
= E [Yct | Xt], while the sixth ap-

plies the same argument along with the law of iterated expectations. The seventh equality
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also uses Assumption 1-NP.i, while the eigth equality follows from Assumption 2-NP.i
and Assumption 2-NP.iii, with the eight one resulting from another application of the
linearity of expectations.

Turning to the denominator of equation (B1), we have
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where the third equality follows from LIE. Focusing on the second term of the last equal-
ity, we have ∑
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In the second equality we have used Assumption 1-NP.i, and the fact that µP
f is constant

w.r.t X f t j. The cross-terms involving ϵ f t and ϵ f j therefore vanish, since E
[
ϵ f t | X f t j

]
=

E
[
ϵ f t | X f t

]
= 0. In the last equality, we have used Assumption 1-NP.iii.

Plugging equation (B5) into (B4) identifies the covariance of parental permanent in-
come:
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where we have definedσt j
(
X f t j, 1, 1

)
B E

[(
Y f t − µ

P
f

) (
Y f j − µ

P
f

)
| X f t j,D f t = 1,D f j = 1

]
,

and used Assumptions 2-NP.i and 2-NP.iii.

Finally, plugging equations (B3) and (B6) into B1) yields

β0 =
E
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c

)∑T
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(
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B2. Locally Robust Moments

Before proposing a locally robust estimator for the IGE, we first illustrate the construc-
tion of locally robust moments, as proposed by Chernozhukov et al. (2022). The point of
departure is GMM estimation of a parameter of interest θ, which depends on a nuisance
parameter γ, and W, a data observation with unknown cumulative distribution function
(CDF) F0. We assume that there is a known function g (W, γ, θ) of a possible realization
W of W, γ and θ such that

E
[
g (W, γ0, θ0)

]
= 0,(B7)

where E [·] is the expectation under F0 and γ0 is the probability limit (plim) under F0 of
a first step estimator γ̂. We also assume that θ0 is identified by this moment, meaning
that θ0 is the unique solution to (B7) over θ in some set Θ.

Chernozhukov et al. (2022) provide a general procedure to construct orthogonal mo-
ment functions for GMM, where first steps have no effect, locally, on average moment
functions. In particular, the authors show that an orthogonal (locally robust) moment
function (ψ) can be constructed by adding the first step influence function (ϕ) to the
identifying moment function (g)

ψ (W, γ, α, θ) = g (W, γ, θ) + ϕ (W, γ, α, θ) ,(B8)
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where α is a function called the Riesz representer6 of the functional γ, on which only the
first step influence function7 depends.

The vector of moment functions ψ (W, γ, α, θ) is considered to be locally robust when
(i) varying γ away from γ0 = γ(F0) has no local effect on E

[
ψ (W, γ, α0, θ)

]
, and (ii)

varying α away from α0 has no local effect on E
[
ψ (W, γ0, α, θ)

]
, where γ(F) is the limit

in probability of γ̂ for a possible CDF of the data W, denoted by F. The first condition
is met when the set Γ of possible directions of departure of γ(F) of γ0 satisfy

d
dt
E

[
ψ (W, γ0 + tδ, α0, θ)

]
= 0 for all δ ∈ Γ, and θ ∈ Θ,

where t is a scalar, δ is a direction of deviation of γ(b) of γ0, and the derivative is evalu-
ated at t = 0. The second condition is met when

E
[
ϕ (W, γ0, α, θ)

]
= 0 for all θ ∈ θ, and α ∈ A,

where the setA is given by the α0’s satisfying

d
dτ
E

[
g (W, γ (Fτ) , θ)

]
=

∫
ϕ (ω, γ0, α0, θ) H(dω),

E
[
ϕ (W, γ0, α0, θ)

]
= 0, E

[
ϕ (W, θ0, α0, θ)2

]
< ∞,

for all H and all θ ∈ Θ, where H is an alternative distribution of Z different from its true
distribution F0, and Fτ = (1− τ)F0 + τH for τ ∈ [0, 1], where H is such that γ(Fτ) exists
for τ small enough and regularity conditions are met.

B3. A Locally Robust Moment for the IGE in the Presence of Incomplete Income Data

Theorem 1 establishes an identification result for the intergenerational elasticity (IGE).
However, estimating this parameter via the plug-in principle, e.g., using machine learn-
ing estimators for the conditional means, introduces model selection and regularization
bias. To address this issue, we follow Chernozhukov et al. (2022) and construct a debi-
ased machine learning estimator for equation (8). This estimator is based on an orthog-
onal moment function that corrects for the regularization bias in the estimation of β0,
which arises from the first-step estimation of the conditional expectations in our identifi-
cation result.

6We have assumed that θ0 is identified by equation (B7). Thus, our object of interest can be expressed as θ0 =
E

[
m (W, γ0)

]
. Under a continuity condition, we can express θ0 as

θ0 = E
[
γ0α0

]
, for all possible γ0,

where α0 is called the Riesz representer of the functional γ0.
7The first step influence function gives the effect of γ on average identifying moment functions under general mis-

specification. Therefore, adding the FSIF (ϕ (W, γ, α, θ)) to the identifying moment g (W, γ, θ), provides an orthogonal
moment, where first step estimation of γ has no effect, locally, on E

[
g (W, γ, θ)

]
.



55

As illustrated in Appendix B2, to find the orthogonal moment function corresponding
to equation (9), it suffices to characterize the first step influence function of the identify-
ing moment. To this end, we first define the following conditional expectations:

µgt (Fτ) (z) B Eτ
[
Ygt |Zt = z

]
, Zt B

(
Xgt,Dgt

)
, g ∈ {c, f }, t = 1, ...,T,
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P
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) (
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P
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]
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)
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)
,

γ (Fτ) B
(
µ1,T

g (Fτ) , γ f ,1,T (Fτ) , γ f ,1,T,1,T (Fτ)
)
,

where Eτ denotes the expectation under Fτ = (1 − τ)F0 + τH. Thus, equation (8), which
identifies our parameter of interest β0, can be rewritten as

E
[
g1

(
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P
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P
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)
,(B9)

where E [·] is the expectation under the true distribution of W (F0) and γ0 B γ (F0) is
the probability limit under F0 of a first step estimator γ̂. Notice that β0 also depends on
the mean of children and parental income

(
µP

c , µ
P
f

)
. However, according to equation (B2)

these two parameters are identified by

µP
g = E
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so that the moment identifying µP

c can be expressed as

E
[
g2 (W, γ (F0) , θ)

]
= 0,

g2 (W, γ (F0) , θ) =
T∑

t=1

µct (F0) (Xct, 1) − µP
c ,(B10)
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and analogously for µP
f

E
[
g3 (W, γ (F0) , θ)

]
= 0,

g3 (W, γ (F0) , θ) =
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µ f t (F0)
(
X f t, 1

)
− µP

f .(B11)

Accordingly, by defining the augmented parameter of interest θ0 B
(
β0, µ

P
c , µ

P
f

)
, the

identifying moment is given by

g (W, γ (Fτ) , θ) =

g1 (W, γ (Fτ) , θ)
g2 (W, γ (Fτ) , θ)
g3 (W, γ (Fτ) , θ)

 .
Thus, to characterize the FSIF it suffices to find ϕ and α0 such that

d
dτ
E

[
g (W, γ (Fτ) , θ)

]
=

∫
ϕ (ω, γ0, α0, θ) H(dω)(B12)

holds. In other words, to derive the locally robust moment for the intergenerational
elasticity, along with the means of permanent income, we must first characterize the in-
fluence function for each element in θ, and then augment their corresponding identifying
moments with it.

We start by finding the FSIF for the nuisance parameter µct (Fτ) (Xct, 1) in the identi-
fying equation g2 (W, γ (Fτ) , θ). To this end, we start by considering the left-hand side of
equation (B12):

d
dτ
E

[
g2 (W, γ (Fτ) , θ)

]
=

d
dτ
E

 T∑
t=1

µct (Fτ) (Xct, 1) − µP
c


=

T∑
t=1

d
dτ
E

[
µct (Fτ) (Xct, 1)

]
,(B13)

where the interchange of differentiation and expectation is justified by the dominated
convergence theorem under standard regularity conditions. We now express the expecta-
tion as

E
[
µct (Fτ) (Xct, 1)

]
=E [Eτ [Yct | Xct,Dct = 1]]

=E

[
Dct

p (Dct = 1|Xct)
Eτ [Yct | Xct,Dct = 1]

]
=E

[
Dct

p (Dct = 1|Xct)
Eτ [Yct | Xct,Dct]

]
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BE
[
α0c,t (Xct,Dct) µct (Fτ) (Xct,Dct)

]
,(B14)

where the first equality follows by definition, the second by the law of iterated ex-
pectations, and the third one by the MAR Assumption 2-NP.i. Furthermore, the term
α0c,t (Xct,Dct) is the Riesz representer of the functional µct (Fτ) (Xct, 1).

We now plug equation (B14) into (B13) to characterize the FSIF for

d
dτ
E

[
µct (Fτ) (Xct, 1)

]
=

d
dτ
E

[
α0c,t (Xct,Dct) µct (Fτ) (Xct,Dct)

]
= −

d
dτ
E

[
α0c,t (Xct,Dct) (Yct − µct (Fτ) (Xct,Dct))

]
=

d
dτ
Eτ

[
α0c,t (Xct,Dct) (Yct − µct (Fτ) (Xct,Dct))

]
=

∫
α0c,t (Xct,Dct) (yct − µct (F0) (xct, dct)) H(dω)

B

∫
ϕc,t

(
ω, γ, α0c,t, θ

)
H(dω),(B15)

where the second equality follows by the fact that Yct does not depend on τ. The third
equality exploits the fact that the prediction errors of children’s annual income are un-
correlated to any function of (Xct,Dct), so that

Eτ
[
α0c,t (Xct,Dct) (Yct − µct (Fτ) (Xct,Dct))

]
= 0,

which in turn implies

d
dτ
Eτ

[
α0c,t (Xct,Dct) (Yct − µct (Fτ) (Xct,Dct))

]
= 0 ⇐⇒

d
dτ
Eτ

[
α0c,t (Xct,Dct) (Yct − µct (F0) (Xct,Dct))

]
= −

d
dτ
E

[
α0c,t (Xct,Dct) (Yct − µct (Fτ) (Xct,Dct))

]
.

Finally, the derivative of the expectation under the perturbed distribution Fτ corresponds
to the integral with respect to the perturbation measure H

d
dτ
Eτ

[
α0c,t(Yct − µct)

]
=

∫
α0c,t(yct − µct)H(dω),

because we consider the linear perturbation Fτ = F0 + τ(H − F0). Thus, the derivative
w.r.t τ isolates the perturbation H − F0, the expectation under H appears because we are
evaluating the Gateaux derivative at τ = 0, and similarly the terms involving F0 vanish,
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as they are constant w.r.t τ.

According to equations (B13) and (B15), the FSIF of µP
c is thus given by

T∑
t=1

Dct

p (Dct = 1 | Xct)
(Yct − µct (Xct, 1)) ,

which corrects for the prediction errors in children’s annual income, weighted by the
propensity scores.

Analogously, the the FSIF of µP
f is given by

T∑
t=1

D f t

p
(
D f t = 1 | X f t

) (
Y f t − µ f t

(
X f t, 1

))
.

We now turn attention to the moment identifying the intergenerational elasticity (equa-
tion (B9)). In contrast to the two other identifying moments, this one involves the three
nuisance parameters µct, µ f t, and σt, j. Thus, to find the FSIF, we start by decomposing
the derivative on the left-hand side of (B12) as follows:

d
dτ
E

[
g (W, γ (Fτ) , β)

]
= β

∑
|t− j|≤h

d
dτ
E

[
σt j (Fτ)

(
X f t j, 1, 1

)]
︸                           ︷︷                           ︸

(1)

+ β

T∑
t=1

min(t+h,T )∑
j=t+1

d
dτ
E

[(
µ f j (F0)

(
X f j, 1

)
− µP

f

)
µ f t (Fτ)

(
X f t, 1

)]
︸                                                        ︷︷                                                        ︸

(2)

+ β

T∑
t=1

min(t+h,T )∑
j=t+1

d
dτ
E

[(
µ f t (F0)

(
X f t, 1

)
− µP

f

)
µ f j (Fτ)

(
X f j, 1

)]
︸                                                        ︷︷                                                        ︸

(3)

−

T∑
t=1

T∑
j=1

d
dτ
E

[(
µct (F0) (Xct, 1) − µP

c

)
µ f j (Fτ)

(
X f j, 1

)]
︸                                                       ︷︷                                                       ︸

(4)

−

T∑
t=1

T∑
j=1

d
dτ
E

[(
µ f j (F0)

(
X f j, 1

)
− µP

f

)
µct (Fτ) (Xct, 1)

]
︸                                                       ︷︷                                                       ︸

(5)

.(B16)

The FSIF is obtained by observing that each term (1)–(5) in Equation (B16) can be ex-
pressed in the form of the left-hand side of Equation (B12). Accordingly, we proceed
as follows: for each term, we (i) identify its Riesz representer α0, (ii) derive the corre-
sponding FSIF ϕ by expressing the term as the right-hand side of Equation (B12), and
(iii) substitute these results back into Equation (B16). This yields the required solution
for ϕ and α0 in Equation (B12). Below, we implement this procedure.

We start by analyzing the expectation in term (1) of equation (B16), which can be
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expressed as:

E
[
σt j (Fτ)

(
X f t j, 1, 1

)]
BE

[
Eτ

[(
Y f t − µ

P
f

) (
Y f j − µ

P
f

)
| X f t j,D f t = 1,D f j = 1

]]
BE

[
Eτ

[
U f tU f j | X f t j,D f t = 1,D f j = 1

]]
=E

[
Eτ

[
U f tU f j | X f t j,D f t,D f j

]]
=E

 D f tD f j

p
(
D f t = 1,D f j = 1 | X f t j

)Eτ [U f tU f j | X f t j,D f t,D f j
]

BE
[
α01,t j

(
X f t j,D f t,D f j

)
σt j (Fτ)

(
X f t j,D f t,D f j

)]
,(B17)

where in the second equality we have defined U f t B Y f j − µ
P
f , the third equality follows

by Assumption 2-NP.iii, and the fourth by LIE and the fact that

D f tD f jEτ
[
U f tU f j | X f t j,D f t = 1,D f j = 1

]
=D f tD f jEτ

[
U f tU f j | X f t j,D f t,D f j

]
.

Having characterized the Riesz representer for E
[
σt j (Fτ)

(
X f t j, 1, 1

)]
, we now turn to

derive its corresponding FSIF:

d
dτ
E

[
σt j (Fτ)

(
X f t j, 1, 1

)]
=

d
dτ
E

[
α01,t j

(
X f t j,D f t,D f j

)
σt j (Fτ)

(
X f t j,D f t,D f j

)]
= −

d
dτ
E

[
α01,t j

(
X f t j,D f t,D f j

) (
U f tU f j − σt j (Fτ)

(
X f t j,D f t,D f j

))]
=

d
dτ
Eτ

[
α01,t j

(
X f t j,D f t,D f j

) (
U f tU f j − σt j (Fτ)

(
X f t j,D f t,D f j

))]
=

∫
α01,t j

(
X f t j, d f t, d f j

) (
U f tU f j − σt j

(
F0; µP

f

) (
x f t j, d f t, d f j

))
H(dω)

B

∫
ϕ1,t j

(
ω, γ, α01,t j

)
H(dω),

(B18)

following the same arguments as equation (B15).

We now derive the FSIF for the second term in equation (B16)

E
[(
µ f j (F0)

(
X f j, 1

)
− µP

f

)
µ f t (Fτ)

(
X f t, 1

)]
=E

[(
E

[
Y f j | X f j,D f j = 1

]
− µP

f

)
Eτ

[
Y f t | X f t,D f t = 1

]]
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=E

(E [
Y f j | X f j,D f j = 1

]
− µP

f

) D f t

p
(
D f t = 1|X f t

)Eτ [Y f t | X f t,D f t = 1
]

=E

(E [
Y f j | X f j,D f j = 1

]
− µP

f

) D f t

p
(
D f t = 1|X f t

)Eτ [Y f t | X f t,D f t

]
=E

(E [
Y f j | X f j

]
− µP

f

) D f t

p
(
D f t = 1|X f t

)Eτ [Y f t | X f t,D f t

]
BE

[
α02,t j

(
X f j, X f t,D f t

)
µ f t (Fτ)

(
X f t,D f t

)]
,

where we have followed the same arguments as those of equation (B17). Following an
analogous procedure to equation (B18), yields

d
dτ
E

[(
µ f j (F0)

(
X f j, 1

)
− µP

f

)
µ f t (Fτ)

(
X f t, 1

)]
=

d
dτ
E

[
α02,t j

(
X f j, X f t,D f t

)
µ f t (Fτ)

(
X f t,D f t

)]
= −

d
dτ
E

[
α02,t j

(
X f j, X f t,D f t

) (
Y f t − µ f t (Fτ)

(
X f t,D f t

))]
=

d
dτ
Eτ

[
α02,t j

(
X f j, X f t,D f t

) (
Y f t − µ f t (Fτ)

(
X f t,D f t

))]
=

∫
α02,t j

(
x f j, x f t, d f t

) (
y f t − µ f t (F0)

(
xt, d f t

))
H(dω)

B

∫
ϕ2,t j

(
ω, γ, α02,t j

)
H(dω).(B19)

The key distinction between equation (B18) and equation (B19) is that the latter re-
quires

E
[
α02,t j

(
X f j, X f t,D f t

) (
Y f t − E

[
Y f t | X f t

])]
= 0.

This orthogonality condition is satisfied by Assumption 1-NP.i, since the conditional
expectation E[Y f t | X f t,D f t, X f j] reduces to Eτ[Y f t | X f t,D f t], rendering the prediction
error Y f t − Eτ[Y f t | Xt,D f t] orthogonal to any function of X f j, X f t, and D f t.

Observe that terms (2), (3), (4) and (5) in equation (B16) share an identical functional
form, differing only in their superscripts (indicating generation g ∈ {c, f }) and time in-
dices ( j or t). This structural similarity implies that the derivations for terms (3), (4), and
(5) have the same structure as term (2). Consequently, the FSIFs and Riesz representers
for these terms are given by

ϕ3,t j
(
ω, γ, α03,t j

)
= α03,t j

(
X f t , X f j,D f j

) (
Y f j − µ f j

(
X f j,D f j

))
, α03,t j =

(
µ f t

(
X f t ,D f t

)
− µP

f

) D f j

p
(
D f j = 1|X f j

)
(B20)
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ϕ4,t j
(
ω, γ, α04,t j

)
= α04,t j

(
Xct , X f j,D f j

) (
Y f j − µ f j

(
X f j,D f j

))
, α04,t j =

(
µct

(
Xct ,D f t

)
− µP

c

) D f j

p
(
D f j = 1|X f j

)
(B21)

ϕ5,t j
(
ω, γ, α05,t j

)
= α05,t j

(
X f j, Xct ,Dct

)
(Yct − µct (Xct ,Dct)) , α05,t j =

(
µ f j

(
X f j,D f j

)
− µP

f

) Dct

p (Dct = 1|Xct)
.

(B22)

The orthogonality condition E[ϕk,t j] = 0 also holds for each k ∈ {3, 4, 5} by Assumption
1-NP.i.

Having characterized the first-step influence function for each term in equation (B16),
we can plug equations (B18)–(B22) into equation (B16):

d
dτ
E

[
g (W, γ (Fτ) , θ)

]
= β

∑
|t− j|≤h

∫
ϕ1,t j

(
ω, γ, α01,t j

)
H(dω) + β

∑
|t− j|>h

∫
ϕ2,t j

(
ω, γ, α02,t j

)
H(dω)

+ β
∑
|t− j|>h

∫
ϕ3,t j

(
ω, γ, α03,t j

)
H(dω) −

T∑
t=1

T∑
j=1

∫
ϕ4,t j

(
ω, γ, α04,t j

)
H(dω)

−

T∑
t=1

T∑
j=1

∫
ϕ5,t j

(
ω, γ, α05,t j

)
H(dω)

B

∫
ϕ1 (ω, γ0, α0, θ) H(dω).(B23)

Equation (B23) defines the first step influence function of estimating γ on the moment
identifying β, thereby allowing us to construct a locally robust moment to estimate the
IGE. To illustrate this point, consider again equation (B8)

ψ (W, γ, α, θ) = g (W, γ, θ) + ϕ (W, γ, α, θ) .

Thus, we construct the locally robust moment by adding ϕ1 (W, γ, α, θ) from equation
(B23) to the identifying moment g1 (W, γ, θ) in equation (B9)

ψ1 (W, γ, α, θ) = β
∑
|t− j|≤h

σt j
(
X f t j, 1, 1

)
+ β

∑
|t− j|>h

(
µ f t

(
X f t, 1

)
− µP

f

) (
µ f j

(
X f j, 1

)
− µP

f

)
−

T∑
t=1

(
µct (Xct, 1) − µP

c

) T∑
j=1

(
µ f j

(
X f j, 1

)
− µP

f

)
+ β

∑
|t− j|≤h

D f tD f j

p
(
D f t = 1,D f j = 1|X f t j

) ((
Y f t − µ

P
f

) (
Y f j − µ

P
f

)
− σt j

(
X f t j, 1, 1

))
+ β

∑
|t− j|>h

(
µ f j

(
X f j, 1

)
− µP

f

) D f t

p
(
D f t = 1|X f t

) (
Y f t − µ f t

(
X f t, 1

))
+ β

∑
|t− j|>h

(
µ f t

(
X f t, 1

)
− µP

f

) D f j

p
(
D f j = 1|X f j

) (
Y f j − µ f j

(
X f j, 1

))
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−

T∑
t=1

T∑
t= j

(
µct (Xct, 1) − µP

c

) D f j

p
(
D f j = 1|X f j

) (
Y f j − µ f j

(
X f j, 1

))
−

T∑
t=1

T∑
t= j

(
µ f j

(
X f j, 1

)
− µP

f

) Dct

p (Dct = 1|Xct)
(Yct − µct (Xct, 1)) .(B24)

Similarly for µP
f and µP

c , we have

ψ2 (W, γ, α, θ) =
T∑

t=1

µct (Xct, 1) − µP
c +

T∑
t=1

Dct

p (Dct = 1|Xct)
(Yct − µct (Xct, 1))

ψ3 (W, γ, α, θ) =
T∑

t=1

µ f t
(
X f t, 1

)
− µP

f +

T∑
t=1

Dct

p
(
D f t = 1|X f t

) (
Y f t − µ f t

(
X f t, 1

))
.(B25)

Thus, our locally robust moment for the parameter θ is given by

ψ (W, γ, α, θ) = (ψ1 (W, γ, α, θ) , ψ2 (W, γ, α, θ) , ψ3 (W, γ, α, θ)) ,(B26)

which yields a locally robust moment for the IGE, incorporating that it depends on µP
f

and µP
c .

A debiased GMM estimator for θ is thus given by

θ̂ = arg min
θ∈Θ

ψ̂(θ)′Υ̂ ψ̂(θ),

where Υ̂ is a positive semi-definite weighting matrix and Θ denotes the parameter space.

B4. Asymptotic Properties of the Locally Robust Estimator

To establish consistency for the locally robust estimator, we will impose the following
assumption

Assumption C-NP. (Boundedness and Regularity Conditions for Consistency)

(i) Identification: E[ψ (W, γ0, α0, θ)] = 0 if and only if θ = θ0;

(ii) Compactness: The parameter space Θ ⊂ R3 is compact;

(iii) Regularity of the Identifying Moment: E[∥g (W, γ0, θ)∥] < ∞ and∫ ∥∥∥∥g
(
w, γ̂(ℓ), θ

)
− g (W, γ0, θ)

∥∥∥∥ dF0(w)
p
→ 0 for all θ ∈ Θ, where F0 denotes the

unknown cumulative distribution function of the data W.

(iv) Local Stability in θ: There exist a constant C > 0 and a function d(W, γ) such that
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for ∥γ − γ0∥ sufficiently small and θ̂LR
n , θ ∈ Θ,∥∥∥∥g

(
W, γ, θ̂LR

n

)
− g (W, γ, θ)

∥∥∥∥ ≤ d(W, γ)
∥∥∥θ̂LR

n − θ
∥∥∥1/C

, with E[d(W, γ)] < C;

(v) Regularity of the Orthogonal Moment:

(a) E[∥ψ (W, γ0, α0, θ0)∥] < ∞;

(b) The following hold:∫ ∥∥∥∥ϕ (
w, γ̂(ℓ), α0, θ0

)
− ϕ (w, γ0, α0, θ0)

∥∥∥∥2
dF0(w)

p
→ 0,∫ ∥∥∥∥ϕ (

w, γ0, α̂
(ℓ), θ0

)
− ϕ (w, γ0, α0, θ0)

∥∥∥∥2
dF0(w)

p
→ 0,∫ ∥∥∥∆̂ℓ(w)

∥∥∥ dF0(w)
p
→ 0,

where ∆̂ℓ(w) := ϕ(w, γ̂(ℓ), α̂(ℓ), θ̂LR
n ) − ϕ(w, γ0, α̂

(ℓ), θ̂LR
n ) − ϕ(w, γ̂(ℓ), α0, θ0)

+ϕ(w, γ0, α0, θ0).

Identification ensures we are solving a well-posed moment problem. The compact-
ness assumption is economically meaningful as the intergenerational income elasticity is
theoretically bounded on the interval (0, 1), reflecting imperfect but positive persistence
of income across generations. The assumed bounds align with cross-country evidence,
where estimates range from approximately 0.14 (Denmark) to 0.58 (Brazil), with most
developed economies exhibiting elasticities between 0.2 and 0.5 (Stuhler et al., 2018).
Moreover, permanent income cannot exceed the highest observed income in the data, nor
can it be negative for individuals with any labor market participation.

The regularity of the identifying moment assumes integrability and L1 continuity. The
former guarantees the moment function remains well-defined in expectation across the
entire parameter space, while the latter ensures that the difference between the moment
function evaluated at the estimated nuisance parameter and its true value becomes neg-
ligible. Local Stability controls how the moment function varies with θ, preventing ex-
treme sensitivity to parameter changes when nuisance estimates are near their true values.
The integrability condition for the orthogonal moment matches that of the identifying
moment, while the stronger L2 convergence (compared to L1) ensures the difference be-
tween the orthogonal moment function evaluated at the estimated nuisance parameters
and their true value becomes negligible faster than for the identifying moment.

As regards the conditions for assymptotic normality, we start by imposing regularity
conditions that translate into concrete requirements within our intergenerational mobility
framework. Specifically, we require the orthogonal moment function in equation (B26)
to be square-integrable at the true parameter values. This condition implies two key
substantive requirements: first, the inverse propensity weights must be bounded, ensured
by Assumption 2-NP, which restricts p(Dgt = 1|Xgt) and p(D f t = 1,D f j|X f jt) away from
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zero and one; second, the income process must exhibit sufficient regularity, captured by
weak temporal dependence (via mixing conditions) and finite higher-order moments,
particularly for the cross-product terms Y f tY f j that enter the moment function.

In addition, we assume that the machine learning estimators for the nuisance parame-
ters, such as the conditional expectations E[Yct|Xct,Dct = 1] and the propensity scores,
converge at suitable rates in mean-square error. These conditions are typically satisfied
in longitudinal data settings where income dynamics are moderately dependent over time
and income observation probability varies smoothly with covariates.

We now turn to establishing the assumptions required for asymptotic normality.

Assumption 3-LR. (Boundedness and Regularity Conditions for Consistency) (i) The
orthogonal moment function is square-integrable:

E[∥ψ (W, β0, γ0, α0)∥2] < ∞.

(ii) The nuisance estimators are consistent in mean-square error:∫ ∥∥∥∥g
(
w, γ̂(ℓ), θ0

)
− g (w, γ0, θ0)

∥∥∥∥2
dF0(w)

p
−→ 0,

∫ ∥∥∥∥ϕ (
w, γ̂(ℓ), α0, θ0

)
− ϕ (w, γ0, α0, θ0)

∥∥∥∥2
dF0(w)

p
−→ 0,∫ ∥∥∥∥ϕ (

w, γ0, α̂
(ℓ), θ̂LR

n

)
− ϕ (w, γ0, α0, θ0)

∥∥∥∥2
dF0(w)

p
−→ 0,

where F0 denotes the unknown cumulative distribution function of the data W.

We further impose a regularity condition that controls the remainder term arising from
the interaction of first-step estimation errors. Specifically, Assumption 4-LR requires
the correction term ∆̂ℓ(w), which captures the deviation from exact orthogonality due to
estimation of the nuisance parameters, to vanish sufficiently quickly in sample averages.
This condition imposes a rate requirement on the interaction remainder ∆̂ℓ(w), namely
that its average must converge to zero faster than 1/

√
n. This ensures that the remainder

is asymptotically negligible and does not affect the limiting distribution of the estimator.

Assumption 4-LR. (First-Step Remainder Control) For each fold ℓ = 1, . . . , L, define
the correction term

∆̂ℓ(w) := ϕ(w, γ̂(ℓ), α̂(ℓ), θ̂LR
n ) − ϕ(w, γ0, α̂

(ℓ), θ̂LR
n ) − ϕ(w, γ̂(ℓ), α0, θ0) + ϕ(w, γ0, α0, θ0).

We assume that this term satisfies at least one of the following conditions:

1)
√

n
∫
∆̂ℓ(w) dF0(w)

p
−→ 0 and

∫ ∥∥∥∆̂ℓ(w)
∥∥∥2

dF0(w)
p
−→ 0

2) 1√
n

∑
i∈Iℓ

∥∥∥∆̂ℓ(Wi)
∥∥∥ p
−→ 0
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3) 1√
n

∑
i∈Iℓ ∆̂ℓ(Wi)

p
−→ 0.

To establish valid inference after machine learning estimation of nuisance parameters,
we require a Neyman orthogonality condition that ensures our moment function remains
insensitive to small estimation errors. This assumption requires the moment condition
to hold at estimated nuisance parameters α̂(ℓ), and (2) specifying alternative bias control
conditions that adapt to different estimation scenarios. The first condition (affine linear-
ity) covers classical doubly robust estimators, while the second (quadratic bound with
n−1/4 convergence) handles many semiparametric cases. The third condition provides a
weaker alternative when the bias vanishes asymptotically. In our framework, these con-
ditions will be satisfied through either the double robustness properties of our moment
function or the convergence rates of our machine learning estimators, similar to standard
results in the semiparametric literature.

Assumption 5-LR. (Neyman Orthogonality and Bias Control) For each fold ℓ = 1, . . . , L,
we require the orthogonality condition∫

ϕ(w, γ0, α̂
(ℓ), β) dF0(w) = 0

to hold with probability approaching one. In addition, one of the following conditions
must be satisfied:

1) ψ̄(γ, α, β) B E
[
ψ (W, γ, α, β)

]
is affine in γ

2) |ψ̄(γ, α0, θ0)| ≤ C∥γ − γ0∥
2 for all γ such that ∥γ − γ0∥ is sufficiently small, and

∥γ̂(ℓ) − γ0∥ = op(n−1/4)

3)
√

n · ψ̄(γ̂(ℓ), α0, θ0)
p
−→ 0.

The following assumption ensures the consistency of the auxiliary components re-
quired for valid variance estimation. It serves two key purposes: first, it guarantees that
the estimation error in θ̂LR

n becomes asymptotically negligible when substituted into the
moment function; second, it requires the first-step remainder term ∆̂ℓ(w) to vanish fast
enough. Together, these conditions ensure that the variability introduced by cross-fitting
and parameter estimation does not distort the asymptotic variance calculations.

Assumption 6-LR. (Square-integrability) For each fold ℓ = 1, . . . , L∫ ∥∥∥∥g
(
w, γ̂(ℓ), β̂LR

n

)
− g

(
w, γ̂(ℓ), β0

)∥∥∥∥2
dF0(w)

p
−→ 0, and

∫ ∥∥∥∆̂ℓ(w)
∥∥∥2

dF0(w)
p
−→ 0.

Finally, we impose an assumption to guarantee the stability of the Jacobian matrix
G(β), ensuring the asymptotic normality of our estimator. Specifically, it requires: (1)
convergence of the nuisance parameter estimates γ̂(ℓ) to their true values γ0, (2) differ-
entiability of the moment function ψ(W, γ, θ) in a neighborhood of θ0, and (3) uniform
convergence of the Jacobian over cross-fitting folds. These conditions ensure that the
first-stage estimation of γ does not distort the asymptotic behavior of the estimator, even
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when machine learning methods are employed. Moreover, by controlling the sensitivity
of the moment function to perturbations in both θ and γ, this assumption underpins the
validity of inference in our cross-fitted setting.

Assumption 7-LR. (Jacobian Stability) The Jacobian matrix G(β) := E
[
∂θψ(W, γ0, θ)

]
exists, and there is a neighborhoodN around θ0 and a norm ∥ · ∥ such that the following
conditions hold:

1) For each fold ℓ, the nuisance parameter estimate satisfies ∥γ̂(ℓ) − γ0∥
p
−→ 0;

2) For all ∥γ − γ0∥ sufficiently small, the function ψ(W, γ, θ) is differentiable with re-
spect to θ inN with probability approaching one. Moreover, there exists a constant
C > 0 and a function d(W, γ) such that for all θ ∈ N and ∥γ−γ0∥ sufficiently small,∥∥∥∥∥∂ψ(W, γ, θ)

∂β
−
∂ψ(W, γ, θ0)

∂β

∥∥∥∥∥ ≤ d(W, γ)|θ − θ0|
1/C , with E[d(W, γ)] < C;

3) For each fold ℓ = 1, . . . , L,∫ ∥∥∥∥∥∥∂ψ(w, γ̂(ℓ), θ0)
∂β

−
∂ψ(w, γ0, θ0)

∂β

∥∥∥∥∥∥ dF0(w)
p
−→ 0.

Having established the assumptions for asymptotic normality, we now turn to derive
a closed form solution for the asymptotic variance of

√
n(θ̂ − θ0), which according to

Lemma 2 is given by
V =

(
G′ΥG

)−1 ,

where

G = E
[
∂g(W, γ, θ)

∂θ

]
= E



∂g1(W,γ,θ)

∂β
∂g1(W,γ,θ)

∂µP
c

∂g1(W,γ,θ)
∂µP

f
∂g2(W,γ,θ)

∂β
∂g2(W,γ,θ)

∂µP
c

∂g2(W,γ,θ)
∂µP

f
∂g3(W,γ,θ)

∂β
∂g3(W,γ,θ)

∂µP
c

∂g3(W,γ,θ)
∂µP

f




is the Jacobian matrix, and Υ is the efficient weighting matrix defined as Υ = Ψ−1,

Ψ =
1
n

L∑
ℓ=1

∑
i∈Iℓ

∑
(t j)∈Ji

ψ(ℓ)
i,t jψ

(ℓ)′
i,t j .

For the identifying moments in equations (B9), (B10), and (B11), we have

∂g1(W, γ, θ)
∂β

=
∑
|t− j|≤h

σt j
(
X f t j, 1, 1

)
+

∑
|t− j|>h

(
µ f t(X f t, 1) − µP

f

) (
µ f j(X f j, 1) − µP

f

)
,

∂g1(W, γ, θ)
∂µP

c
= −

T∑
j=1

(
µ f j(X f j, 1) − µP

f

)
,
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∂g1(W, γ, θ)
∂µP

f

= −β

T∑
t=1

T∑
j=1

(
µ f t(X f j, 1) + µ f j(X f j, 1) − 2µP

f

)
+

T∑
t=1

(
µct(Xct, 1) − µP

c

)
,

∂g2(W, γ, θ)
∂β

= 0,
∂g2(W, γ, θ)

∂µP
c

= −1,
∂g2(W, γ, θ)

∂µP
f

= 0,
∂g3(W, γ, θ)

∂β
= 0,

∂g3(W, γ, θ)
∂µP

c
= 0,

∂g3(W, γ, θ)
∂µP

f

= −1,

(B27)

where we have used

σt j(Xt j,D f t,D f j) = E
[
Y f tY f j − µ

P
f (Y f t + Y f j) +

(
µP

f

)2
| X f t j,D f t,D f j

]
= E

[
Y f tY f j | X f t j,D f t,D f j

]
+

(
µP

f

)2

− µP
f

(
E

[
Y f t | X f t j,D f t,D f j

]
+ E

[
Y f j | X f t j,D f t,D f j

])
= E

[
Y f tY f j | X f t j,D f t,D f j

]
+

(
µP

f

)2

− µP
f

(
E

[
Y f t | X f t j

]
+ E

[
Y f j | X f t j

])
= E

[
Y f tY f j | X f t j,D f t,D f j

]
+

(
µP

f

)2

− µP
f

(
E

[
Y f t | X f t

]
+ E

[
Y f j | X f j

])
= E

[
Y f tY f j | X f t j,D f t,D f j

]
+

(
µP

f

)2

− µP
f

(
E

[
Y f t | X f t,D f t = 1

]
+ E

[
Y f j | X f j,D f j = 1

])
,

to find ∂g1(W,γ,θ)
∂µP

f
. In the last expression, the third and fourth equality follow by the MAR

Assumption 2-NP.iii, and Assumption 1-NP.i, which ensures E[Y f t | X f t j] = E[Y f t | Xt].
Finally, the last equation also uses the MAR Assumption 2-NP.iii.

Combining the results above, we obtain the closed-form solution for Jacobian, and
thus for the asymptotic variance in Lemma 2. Accordingly, the asymptotic variance can
be estimated as

V̂ =
(
Ĝ′Υ̂Ĝ

)−1
,

where Ĝ is a consistent estimator of the Jacobian characterized by equation (B27), and
Υ̂ = Ψ̂−1, where

Ψ̂ =
1
n

L∑
ℓ=1

∑
i∈Iℓ

∑
(t j)∈Ji

ψ̂(ℓ)
i,t jψ̂

(ℓ)′
i,t j .
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B5. Derivation of the t− tests for Assumptions 1-NP.ii and 1-NP.iii

We begin by constructing a test for the orthogonality condition between children’s
income prediction errors and parental permanent income. The formal hypothesis is spec-
ified as:

H0 :
1
T

T∑
t=1

E
[
ϵctYP

f

]
= 0, vs H1 :

1
T

T∑
t=1

E
[
ϵctYP

f

]
, 0,(B28)

where ϵct B Yct − E [Yct | Xct] denotes the children’s income prediction errors at time t
and YP

f represents parental permanent income. The main challenge in testing this hypoth-
esis is that both random variables are unobserved, and their machine learning estimation
introduces regularization and model selection bias when testing H0. To address these is-
sues, we propose a three stages procedure. First, we establish identification of the object
of interest θc f B

1
T

∑T
t=1 E

[
ϵctYP

f

]
. Second, we construct a locally robust estimator θ̂c f .

Finally, we provide a t−test based on θ̂c f ,n.
The assumptions required for identifying θc f t differ from those needed for identifying

the IGE. Accordingly, we now present variants of Assumptions 1-NP and 2-NP.

Assumption 1-NP’. (Conditional Mean Independence) The observable characteristics
satisfy:

E
[
Y f t | X f t, Xc j

]
= E

[
Y f t | X f t

]
for , t, j = 1, ...T.

Assumption 2-NP’. (Missing At Random)

i. The missingness of children’s and parents annual income Ygt is as good as random
once we control for Xgt

Ygt ⊥ Dgt | Xgt, t = 1, ...,T.

ii. Given family characteristics, there is both missing and non-missing children and
fathers’ incomes for every age

0 <p (Dct = 1 | Xct) < 1 a.s, t = 1, ...,T.

iii. The missingness of child–parent income pairs is as good as random once we control
for covariates: (

Yct,Y f j
)
⊥

(
Dct,D f j

)
|
(
Xct, X f j

)
, t, j = 1, . . . ,T.

iv. Given covariates, there is both missing and non-missing child–parent income pairs:

0 < Pr
(
Dct = 1,D f j = 1 | Xct, X f j

)
< 1 a.s., t, j = 1, . . . ,T.
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With this variants of the assumptions in place, we now show identification of θc f t:

θc f =
1
T

T∑
t=1

E
[
ϵctYP

f

]
=

1
T

T∑
t=1

E

ϵct
1
T

T∑
j=1

Y f j


=

1
T 2

T∑
t=1

T∑
j=1

E
[
(Yct − E [Yct | Xct]) Y f j

]
=

1
T 2

T∑
t=1

T∑
j=1

E
[
YctY f j

]
− E

[
E [Yct | Xct] Y f j

]
=

1
T 2

T∑
t=1

T∑
j=1

E
[
E

[
YctY f j | Xct, X f j

]]
− E

[
E [Yct | Xct]E

[
Y f j | Xct, X f j

]]
=

1
T 2

T∑
t=1

T∑
j=1

E
[
E

[
YctY f j | Xct, X f j,Dct = 1,D f j = 1

]]
−

1
T 2E

[
E [Yct | Xct,Dct = 1]E

[
Y f j | X f j,D f j = 1

]]
B E

 1
T 2

T∑
t=1

T∑
j=1

(
µc f t j

(
Xct, X f j, 1, 1

)
− µct (Xct, 1) µ f j

(
X f j, 1

)) ,(B29)

where the second equality follows by the definition of permanent income. The fifth
equality follows by LIE, while the sixth one follows by Assumption 2-NP’.iv.

Having established identification, we now construct a moment for θc f that is locally
robust to the nuisance parameters γc f B

(
µ1,T

f , µ1,T
c , µt,1,T

c f

)
, where

µ1,T
g B

(
µg1, ..., µgT

)
, g ∈ {c, f },

µt,1,T
c f B

(
µc f t, ..., µc f t

)
, t = 1, ...,T

σ1,T,1,T B
(
µ1,1,T

c f , ..., µT,1,T
c f

)
.

Building on the Riesz representer characterization for µct in equation (B14) and follow-
ing the arguments from Appendix B3, the first-step influence function for µct in the the
identifying moment in equation (B29) is

−
1

T 2

T∑
t=1

T∑
j=1

µ f j
(
X f j, 1

) Dct

p (Dct = 1|Xct)
(Yct − µct (Xct, 1)) .



70

Similarly, for µ f t, we have

−
1

T 2

T∑
t=1

µct (Xct, 1)
T∑

j=1

D f j

p
(
D f j = 1|X f j

) (
Y f j − µ f j

(
X f j, 1

))
.

Following the same argument in equation (B17), the FSIF for µc f t j is given by

1
T 2

T∑
t=1

T∑
j=1

DctD f j

p
(
Dct = 1,D f j = 1|Xct, X f j

) (
YctY f j − µc f t j

(
Xct, X f j, 1, 1

))
Accordingly, the locally robust moment for θc f is given by

ψc f

(
W, γc f , θc f

)
= gc f

(
W, γc f , θc f

)
+ ϕc f

(
W, γc f , αc f , θc f

)
=

1
T 2

T∑
t=1

T∑
j=1

(
µc f t j

(
Xct, X f j, 1, 1

)
− µct (Xct, 1) µ f j

(
X f j, 1

))
− θc f

+
1

T 2

T∑
t=1

T∑
j=1

DctD f j

p
(
Dct = 1,D f j = 1|Xct, X f j

) (
YctY f j − µc f t j

(
Xct, X f j, 1, 1

))
−

1
T 2

T∑
t=1

T∑
j=1

µct (Xct, 1)
D f j

p
(
D f j = 1|X f j

) (
Y f j − µ f j

(
X f j, 1

))
−

1
T 2

T∑
t=1

T∑
j=1

µ f j

(
X f j, 1

) Dct

p (Dct = 1|Xct)
(Yct − µct (Xct, 1)) .(B30)

and the debiased moment function is then computed as

ψ̂c f
(
θc f

)
=

1
n

L∑
ℓ=1

∑
f∈Fℓ

∑
i∈P f

∑
(t, j)∈Ji

ψ̂(ℓ)
c f ,i,t, j, ψ̂(ℓ)

i,t j B gc f
(
Wi,t j, γ̂

(ℓ)
c f , θc f

)
+ ϕc f

(
Wi,t j, γ̂

(ℓ)
c f , α̂

(ℓ)
c f , θc f

)
,

where Ji denotes the set of all tuples (t, j) observed for child–father pair i. Since the
system is exactly identified, there is no need to compute fold-specific θ̂(ℓ)

c f . Accord-
ingly, the locally robust estimator θ̂c f ,n is the solution to the sample moment condition
ψ̂c f

(
θc f

)
= 0.

To test the null hypothesis H0 : θc f = 0 , we implement a t−test based on the estimator
θ̂c f ,n. Accordingly, the t statistic is given by

tc f ,n =
θ̂c f ,n√
V̂c f ,n/n

,
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where V̂c f ,n is a consistent estimator of the asymptotic variance of θ̂c f ,n.

Consistency of θ̂c f ,n follows by Lemma 1. In particular, under Assumptions 1-NP’,
2-NP’ and C-NP, we have

θ̂c f ,n
p
→ θc f 0.

Similarly, under Assumptions 1-NP’, 2-NP’, 3-LR-5-LR and 7-LR, θ̂LR
n

p
−→ θ0, the asymp-

totic normality of θ̂c f ,n directly follows from Theorem 9 of Chernozhukov et al. (2022).
Specifically, we have:

√
n
(
θ̂c f ,n − θc f 0

) d
−→ N(0,Vc f ),

where Vc f = E
[
ψ2

c f

(
W, γc f , θc f

)]
. In addition, if Assumption 6-LR holds, then V̂c f ,n

p
−→

Vc f .

Under H0 in equation (B28) and Assumptions 1-NP’, 2-NP’, 3-LR-6-LR, we have

√
n
(
θ̂c f ,n − θc f 0

) d
−→ N(0,Vc f )⇒

θ̂c f ,n√
V̂c f ,n/n

d
−→ N(0, 1),

where V̂c f ,n is a consistent estimator of Vc f that accounts for dependence within families.

Having established the asymptotic distribution of the test, we now turn to show that
under Assumptions 1-NP’, 2-NP’, 3-LR-7-LR and C-NP, the test that rejects H0 when
|tc f ,n| > z1−α/2 is consistent.

tc f ,n =
θ̂c f ,n√
V̂c f ,n/n

=
θc f 0 + Op(n−1/2)√

(Vc f + op(1))/n

=

√
nθc f 0 + Op(1)

V1/2
c f + op(1)

=
√

n θc f 0 V−1/2
c f + Op(1).

Thus, under H1 where θc f 0 , 0:

Pr
(
|tc f ,n| > z1−α/2 | θc f 0

)
= Pr

(√
n θc f 0 V−1/2

c f + Op(1) > z1−α/2
)

→ 1,

since
√

n θc f 0 V−1/2
c f diverges as n→ ∞ and dominates the Op(1) term.

Having established the consistency of the test, we now analyze its behavior under local
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alternatives of the form

H1n : θc f 0 =
δ
√

n
, δ ∈ R fixed.

Under Assumptions 1-NP’, 2-NP’, 3-LR-7-LR and C-NP, we have

√
n
(
θ̂c f ,n − θc f 0

) d
−→ N

(
0,Vc f

)
, V̂c f ,n

p
−→ Vc f .

Therefore, the t-statistic satisfies

tc f ,n =
θ̂c f ,n√
V̂c f ,n/n

=
θc f 0 + (θ̂c f ,n − θc f 0)√

V̂c f ,n/n

=
δ/
√

n + (θ̂c f ,n − θc f 0)√
Vc f /n + op(n−1/2)

=
δ +
√

n(θ̂c f ,n − θc f 0)

V1/2
c f + op(1)

=
δ

V1/2
c f

+

√
n(θ̂c f ,n − θc f 0)

V1/2
c f

+ op(1)

=
δ

V1/2
c f

+ Op(1).

By Slutsky’s theorem, under H1n we then have

tc f ,n
d
−→ N

 δ

V1/2
c f

, 1

 ,
so that the t-test has asymptotic power

lim
n→∞

Pr
(
|tc f ,n| > z1−α/2 | θc f 0 =

δ
√

n

)
= 2

1 − Φ
z1−α/2 −

|δ|

V1/2
c f


 > α whenever δ , 0,

where Φ denotes the CDF of the standard normal distribution.

Thus, the t-test has asymptotic power strictly greater than its size against any local
alternative with δ , 0, and the power approaches one under fixed alternatives.
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We now apply the same procedure to test whether parental income prediction errors
are uncorrelated for observations separated by more than h years. In particular, we are
interested in testing the assumption

H0 :
1

T 2

∑
|t− j|>h

E
[
ϵ f tϵ f j

]
= 0, vs H1 :

1
T 2

∑
|t− j|>h

E
[
ϵ f tϵ f j

]
, 0,

where the prediction errors of parental income at time t are defined as ϵ f t B Y f t −

E
[
Y f t

∣∣∣ X f t
]
. However, joint observation of parental incomes (Y f t,Y f j) (i.e., D f t = 1,D f j =

1) occurs only for relatively close time periods, such as incomes observed between
ages 25 and 35 for a given individual. Consequently, income pairs for distant periods
(|t − j| > h) are systematically absent in available data. To address this limitation, we
adopt the No Re-emergence of Dependence assumption, which posits that if the auto-
correlation at lag (h + 1) is negligible, then it remains negligible for all higher lags. In
particular, we formalize it as

Assumption 8-NP”. (No Re-emergence of Dependence) Let {ϵ f t} be covariance-stationary
with autocorrelation function ρ(k), k ≥ 1. Assume:

1) Bounded tail dependence: There exists a nonincreasing sequence u(k) → 0 such
that

|ρ(k)| ≤ u(k) for all k ≥ 1.

2) No re-emergence: If |ρ(h + 1)| is negligible (statistically indistinguishable from
zero), then |ρ(k)| is negligible for all k > h + 1.

Under this assumption, we can test Assumption 1-NP.iii with the hypothesis8

H0 :
1

T 2

∑
t− j=h+1

E
[
ϵ f tϵ f j

]
= 0, vs H1 :

1
T 2

∑
t− j=h+1

E
[
ϵ f tϵ f j

]
, 0(B31)

We now state the Assumptions required to identify θ f h B
1

T 2

∑
t− j=h+1 E

[
ϵ f t ϵ f j

]
Assumption 1-NP”. (Conditional Mean Independence and Orthogonality) The observ-
able characteristics satisfy

E
[
Y f t | X f t, X f t j

]
= E

[
Y f t | X f t

]
for X f j ⊂ X f t j, t, j = 1, ...T.

Assumption 2-NP”. (Missing At Random)

i. The missingness of parental annual income pairs
(
Y f t,Y f j

)
is as good as random

once we control for X f t j(
Y f t,Y f j

)
⊥

(
D f t,D f j

)
| X f t j, for all t − j > h > 0,

8since the covariance is symmetric, we do not need to test for all |t − j| = h + 1 < T , but rather for t and j such that
t − j = h + 1 < T
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where X f t j are the family characteristics predictive of parental income covariance
between years t and j, and X f t j B X f t for j = t.

ii. Given family characteristics, there is both missing and non-missing parental in-
comes for every age and its neighboring ages

0 < p
(
D f t = 1,D f j = 1 | X f t j

)
< 1 a.s., for all t − j > h > 0.

With the assumptions in place, we now show identification of θ f h:

θ f h =
1

T 2

∑
t− j=h+1

E
[
ϵ f tϵ f j

]
=

1
T 2

∑
t− j=h+1

E
[(

Y f t − E
[
Y f t | X f t

]) (
Y f j − E

[
Y f j | X f j

])]
=

1
T 2

∑
t− j=h+1

(
E

[
Y f tY f j − E

[
Y f t | X f t

]
Y f j − Y f tE

[
Y f j | X f j

]
+ E

[
Y f t | X f t

]
E

[
Y f j | X f j

]])
=

1
T 2

∑
t− j=h+1

E
[
E

[
Y f tY f j − E

[
Y f t | X f t

]
Y f j − Y f tE

[
Y f j | X f j

]
+ E

[
Y f t | X f t

]
E

[
Y f j | X f j

]
| Xt f j

]]
=

1
T 2

∑
t− j=h+1

(
E

[
E

[
Y f tY f j | Xt f j

]]
− E

[
E

[
Y f t | X f t

]
E

[
Y f j | X f j

]])
−

1
T 2

∑
t− j=h+1

(
E

[
E

[
Y f t | X f t

]
E

[
Y f j | X f j

]]
+ E

[
E

[
Y f t | X f t

]
E

[
Y f j | X f j

]])
=

1
T 2

∑
t− j=h+1

(
E

[
E

[
Y f tY f j | Xt f j

]]
− E

[
E

[
Y f t | X f t

]
E

[
Y f j | X f j

]])
=

1
T 2

∑
t− j=h+1

(
E

[
E

[
Y f tY f j | Xt f j

]
− E

[
Y f t | X f t

]
E

[
Y f j | X f j

]])
= E

 1
T 2

∑
t− j=h+1

(
E

[
Y f tY f j | X f t j,D f t = 1,D f j = 1

]
− E

[
Y f t | X f t,D f t = 1

]
E

[
Y f j | X f j,D f j = 1

]]
B E

 1
T 2

∑
t− j=h+1

(
µ f t j

(
X f t j, 1, 1

)
− µ f t

(
X f j, 1

)
µ f j

(
X f j, 1

)) .(B32)

The moment for θ f h that is locally robust to the nuisance parameter γ f h B
(
µ1,T

f , µ f h
)

is
given by

ψ f h
(
W, γ f h, θ f h

)
=

1
T 2

∑
t− j=h+1

(
µ f t j

(
X f t j, 1, 1

)
− µ f t

(
X f j, 1

)
µ f j

(
X f j, 1

))
− θ f h

+
1

T 2

∑
t− j=h+1

D f tD f j

p
(
D f t = 1,D f j = 1|X f t j

) (
Y f tY f j − µ f t j

(
X f t j, 1, 1

))
−

1
T 2

∑
t− j=h+1

µ f j
(
X f j, 1

) D f t

p
(
D f t = 1|X f t

) (
Y f t − µ f t

(
X f t, 1

))
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−
1

T 2

∑
t− j=h+1

µ f t
(
X f t, 1

) D f j

p
(
D f j = 1|X f j

) (
Y f j − µ f j

(
X f j, 1

))
,(B33)

and its corresponding estimator solves the cross-fitted orthogonal moment.
Consequently, the locally robust t−test for H0 in equation (B31) is given by

t f h,n =
θ̂ f h,n√
V̂ f h,n/n

,

where V̂ f h,n is a consistent estimator of the asymptotic variance of θ̂ f h,n. The asymptotic
properties of t f h,n follow analogously from those established for t f h,n under Assumptions
1-NP”, 2-NP”, 3-LR-7-LR, C-NP, and 8-NP”.


