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This paper examines how family background relates to economic mo-
bility for disadvantaged children. We use data from the Panel Study
of Income Dynamics for below-median income, multiple-child families.
Using a novel approach combining family fixed effects, Empirical Bayes
shrinkage, and SHapley Additive exPlanations, we identify which fam-
ily characteristics most strongly predict children’s economic outcomes
relative to their parents, holding parental income constant. Our find-
ings reveal that race and family structure are the primary predictors,
accounting for 35% and 22.4% of the explained variation, respectively.
While supporting the well-documented racial disparities in intergener-
ational mobility, our results suggest that the role of family structure in
intergenerational mobility extends beyond the single- versus two-parent
household distinction.

I. Introduction and related work

Children from underprivileged backgrounds are less likely to thrive. In a low-mobile
society, the well-being of individuals is mainly determined by the socioeconomic level
of their parents. This is especially detrimental for children of low-income families as
it limits their chances of escaping the poverty trap. Studying the relationship between
family background, particularly of disadvantaged children, and economic mobility offers
a deeper understanding of the factors associated to the persistence of poverty.

Extensive research has documented childhood environment’s lasting economic im-
pacts. Seminal work by Corcoran et al. (1976, 1990) established that parental character-
istics significantly influence children’s educational attainment and earnings, while Björk-
lund et al. (2007) emphasized the interplay of genetic and environmental factors. More
recently, Bingley et al. (2017) identify families, rather than communities, as the dom-
inant factor driving lifetime earnings inequality, while Chetty et al. (2014) link higher
mobility to area traits including family stability, school quality, and neighborhood inte-
gration. These findings raise a central question for both research and policy: what family
factors foster intergenerational mobility? Empirically, we investigate a more tractable,
yet insightful question: which family factors best predict absolute mobility?

This paper provides a descriptive analysis of how family background influences the
permanent income of children born in low-income households. While recent work has
examined spatial heterogeneity in mobility (e.g., neighborhood (Chetty and Hendren,
2018; Cholli et al., 2024) or commuting zones (Chetty et al., 2014)), we instead analyze
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heterogeneity at the family level. Drawing on data from the Panel Study of Income Dy-
namics (PSID) for multiple-child low-income families, we identify which family char-
acteristics most strongly predict children’s economic outcomes relative to their parents,
holding parental income constant.

To identify key the family predictors of intergenerational mobility, we integrate shrink-
age methods and interpretable machine learning. Our approach proceeds in three stages:
first, we measure absolute mobility as the family fixed effect (FE) in a regression of chil-
dren’s permanent income on parental permanent income. This measure captures varia-
tions in children’s economic outcomes relative to their parents, reflecting both upward
and downward mobility. Specifically, the FE accounts for factors shared by siblings that
influence their permanent income through channels other than parental income. As the
FE increases, so does the predicted permanent income, suggesting that the FE can be in-
terpreted as a family’s ability to enhance their children’s long-term economic outcomes,
conditional on parental income. Next, we refine these estimates using Empirical Bayes
shrinkage to mitigate noise from small family sizes. Finally, we apply SHapley Addi-
tive exPlanations (SHAP) values (Lundberg, 2017) to analyze which family factors best
predict absolute mobility.

Our analysis reveals race and family structure as the strongest predictors of absolute
mobility. SHAP analysis indicates that, conditional on parental income, race (white
vs. non-white) explains 35% of the total variable importance among family background
characteristics. Being raised in a nuclear family, defined as a household with a head,
a spouse (if present), and children, accounts for 22.4%. Other relevant factors include
the household’s age at first birth (10.5%), number of children (9.4%), and education
(9.3%). Because our methodology holds parental income constant, the estimated relative
importance of these factors excludes income-mediated channels, including the mone-
tary returns to education, income dilution in extended families, and racial disparities in
parental income.

This paper contributes to different strands of the literature on intergenerational mo-
bility. First, we provide a new perspective on the role of family structure on children’s
economic outcomes relative to their parents, advancing beyond the conventional focus on
single- versus two-parent families. Kearney (2023) examines the widening economic dis-
parities linked to family structure, emphasizing that children raised in stable two-parent
households tend to achieve higher educational attainment and greater upward mobil-
ity. These findings align with Chetty et al. (2014), who finds that regions with weaker
family structures exhibit significantly lower levels of intergenerational mobility. Simi-
larly, Bloome (2017) shows that children raised outside stable two-parent families are
less likely to attain high-income status in adulthood compared to their peers from sta-
ble two-parent households. By focusing on the broader distinction between nuclear and
non-nuclear families, we document associations between family structure and economic
mobility, offering a complementary perspective. In particular, our findings suggest that
the role of family structure in intergenerational mobility extends beyond the single- ver-
sus two-parent household distinction.

Second, while our results supports the widely documented racial disparities in inter-
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generational mobility (Hertz, 2005; Bloome, 2014; Davis and Mazumder, 2018), we find
that family structure emerges as the second most influential factor. This result gains fur-
ther significance when considering that 68% of white children were consistently raised in
nuclear families, compared to just 35% of non-white children in our sample. Together,
these findings align with existing work on how family structure differences may con-
tribute to persistent racial mobility gaps (McLanahan and Percheski, 2008), offering new
descriptive evidence into this ongoing conversation.

Third, our study advances the empirical analysis of intergenerational mobility through
several fronts. Our fixed effects methodology first residualizes children’s income with
respect to parental income, achieving two critical objectives: it prevents parental income
from dominating subsequent analyses while capturing family background influences that
are not transmitted via parental income. We further enhance estimation precision through
Empirical Bayes shrinkage, leveraging information across families to overcome data lim-
itations at the family level. The SHAP analysis then provides a sophisticated measure
of relative variable importance that fully accounts for interactions and nonlinearities, of-
fering substantial advantages over traditional correlation-based approaches. Finally, our
simulation results indicate that integrating parametric Empirical Bayes estimation with
SHAP yields superior performance compared to analyzing raw fixed effects. Together,
this multi-faceted approach provides new tools for understanding mobility predictors
while addressing fundamental challenges in family-level analysis.

The remainder of the paper is organized as follows: Section II provides an overview of
the data. Section III presents the model, discusses identification, and describes the em-
pirical procedure for estimating the fixed effects and analyzing which family factors best
predict absolute mobility. Section IV presents simulation results, Section V describes the
main findings, and Section VI concludes.

II. Data

We use data from the Panel Study of Income Dynamics (PSID), a commonly used
dataset for analyzing intergenerational persistence in the U.S. Since our analysis exam-
ines mobility at the family level, we retain the Survey of Economic Opportunity (SEO),
which is often excluded due to its overrepresentation of low-income populations.1 Our
sample, covering the period from 1968 to 2021, consists of 1088 multiple-child families
whose family income in the father’s generation was below the median of the income dis-
tribution for that generation. Following (Chetty et al., 2014), we focus on below-median
income families for three key reasons : (i) their children face the most significant mobil-
ity barriers, (ii) understanding economic opportunity dynamics is most policy-relevant
in this context, and (iii) this focus allows clearer examination of how family background
relates to mobility in disadvantaged households.

We measure parental income as the three-year average of log family income when each
child is between the ages of 13 and 21.2 For 7.5% of fathers in our data, family income

1The SEO is typically excluded because its overrepresentation can influence estimates at the aggregate level, such as
the intergenerational elasticity.

2This follows from Theorem 1’s implications about within-family variation in parental income.
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data during this period is insufficient. In these cases, we compute parental income by
averaging log family income over the closest available three-year window to ages 13–21.
In contrast, the child’s permanent income is measured using a single realization of log
family income between the ages of 30 and 40. Since we use family income, our analysis
includes both male and female children. All dollar values are adjusted to 1968 dollars
using the CPI. To address zero-income cases, we bottom-code family income at the 1st
percentile, which applies to 0.18% of the observations in the raw PSID data.

Our dataset provides detailed information on family background characteristics. For
education, the dataset records the highest level of education completed and whether the
household head received additional training beyond standard school and college educa-
tion. As regards family structure, the dataset records whether the household is nuclear
(head, spouse (if any), and children) or extended (including other individuals). We utilize
the available data to construct a variable representing the father’s age at first birth and
the proportion of male children. Furthermore, we use the retrospective inter-generation
map of the PSID to obtain the number of children in the family.3 The dataset further
includes information on race (white or non-white), religion, and the family’s ownership
of housing and business.

To reflect the household conditions of children when they were growing up, we con-
struct family background characteristics based on the period from the birth of the first
child until the eldest child reaches 18 years of age. For time-invariant variables, we
compute the mode, while for time-variant variables, we use the average. Accordingly,
time-variant variables reflect the probability of being 1, e.g., the probability of house
ownership when children were growing up. Summary statistics are reported in Table 1.

Table 1—: Summary Statistics for Below-Income Families in the Sample

Mean Median Standard Deviation Minimum Maximum
Log of Father’s Permanent Income 8.67 8.81 0.57 1.65 9.29
Log of Children’s Permanent Income 8.69 8.85 0.94 -1.09 11.16
Education Level 11.19 12.00 3.20 0.00 17.00
Additional Training 0.18 0.00 0.39 0.00 1.00
Nuclear Household 0.86 1.00 0.23 0.00 1.00
Number of Children 3.74 3.00 1.98 2.00 15.00
Religion 0.90 1.00 0.30 0.00 1.00
Age at Birth of First Child 25.10 24.00 5.62 13.00 59.00
White 0.54 1.00 0.50 0.00 1.00
Proportion of Male Children 0.50 0.50 0.29 0.00 1.00
Business Ownership 0.10 0.00 0.22 0.00 1.00
House Ownership 0.64 0.79 0.38 0.00 1.00
Father’s Birth Year 1941 1943 14.21 1892 1970
Children’s Birth Year 1968 1966 12.69 1932 1991

3The number of children in the family may differ from the number of observed children in the sample due to some
children not being observed between the ages of 30 and 40.
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The summary statistics highlight substantial heterogeneity in the background charac-
teristics of below-median income families. As indicated by Table 1, children exhibit
income levels similar to their parents, though with significantly greater variability in the
children’s generation. Most parents have completed at least high school, with educa-
tional attainment ranging from no schooling to graduate degrees. Additionally, 18% of
parents received training beyond regular schooling. The majority of families are always
nuclear (probability of family being nuclear equal to 1), consisting of the head, spouse
(if any), and children, with three children per household. The gender ratio among chil-
dren is balanced, with equal numbers of males and females in most families. Religiosity
is prevalent, with 90% of parents reporting adherence to a religion. Homeownership is
common, with 64% of families owning their dwelling, while business ownership is rela-
tively rare at 10%. In terms of birth years, most parents in the sample were born between
1927 and 1957, while the majority of children were born between 1956 and 1978.

III. Empirical Framework

A. A Simple Model to Explain Absolute Mobility

Consider a random sample of independent and identically distributed observations
W =

(
Y j,YP

j , X j
)
, where Y j B

(
Y1, ...,Yn j

)
is a n j-dimensional random vector repre-

senting the permanent income measures of the children of family j, YP
j B

(
YP

1 , ...,Y
P
n j

)
contains the corresponding parental permanent income measures for each child, and X j
are family background characteristics.

To analyze absolute mobility, we consider the following model:

Y j = βYP
j + 1n jα j + ϵ j, j = 1, ...,N,(1)

where β corresponds to the intergenerational elasticity, and 1n j is the n j-dimensional
vector of ones. The fixed effects α j encompass the influence of factors shared by siblings
on their permanent income, holding parental income constant. These factors include
both observed variables

(
X j
)

and unobserved variables. Finally, ϵ j represents the n j-
dimensional random vector of idiosyncratic shocks.

Our measure of absolute mobility is represented by the family fixed effects (FEs) in
equation (1).4 This measure captures variations in children’s economic outcomes relative
to their parents, reflecting both upward and downward mobility. Specifically, the FE
accounts for factors shared by siblings that influence their permanent income through
channels other than parental income.

As the FE increases, so does the predicted permanent income, suggesting that FEs can
be interpreted as a measure of a family’s ability to enhance their children’s long-term
economic prospects, conditional on parental income. This interpretation forms the ba-
sis for our use of α j as a measure of absolute mobility. This approach parallels teacher

4In this framework, the FEs exploit variation between sibling incomes to capture the impact of family background on
children’s income, which underscores the need to rely on multiple-child families.
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value-added models (Kane and Staiger, 2008; Jacob and Lefgren, 2008; Gilraine et al.,
2020), which isolate a teacher’s contribution to student achievement (measured using
fixed effects) while controlling for observable student and school characteristics. Simi-
larly, our family fixed effects encompass the impact of family background on children’s
income, while holding parental income constant.

Unlike standard mobility measures, such as absolute and absolute upward mobility
from Chetty et al. (2014), which capture overall income transmission, our measure iso-
lates the influence of family background beyond parental income. By measuring absolute
mobility using the family fixed effects in equation (1), we disentangle the influence of
family background on children’s outcomes beyond parental income. To illustrate this
point, consider analyzing family structure and parental education. In a household with
multiple children and extended relatives, family income needs to be allocated among
many individuals, mechanically limiting the family’s ability to boost their offspring’s in-
come. Thus, focusing on the FEs rather than the expected children’s permanent income
(or rank) enables us to assess whether family structure exerts an influence beyond income
dilution.

In the case of parental education, one potential transmission channel is that higher edu-
cation levels can lead to a higher lifetime income, which in turn allows parents to provide
better opportunities for their children. Since our mobility measure holds parental perma-
nent income constant, the effect of parental education on children’s income rules out this
channel. Thus, a positive relationship between parental education and α j suggests that
parental education can boost children’s outcomes through channels other than income,
such as cognitive and non-cognitive skill development or parental support and engage-
ment.

Studying absolute mobility is especially relevant for children from disadvantaged back-
grounds, as they often face the greatest challenges in achieving success. For this purpose,
we restrict our analysis to children from below-median income families and specify our
baseline model as

Y j = βYP
j + 1n jα j + ϵ j, j ∈ S ⊆ {1, ...,N} ,(2)

where S are the families whose income is below the median.

Our object of interest lies in estimating E
[
α j | X j,S

]
, which captures how family

background characteristics X j. This conditional mean determines how observed fam-
ily factors influence children’s permanent income through mechanisms beyond parental
income. Accordingly, it encapsulates the information regarding which family factors
best predict economic mobility beyond parental income and how these factors influence
children’s permanent income. While we do not investigate specific causal mechanisms,
analyzing these predictors provides valuable insights into family-level associations with
intergenerational persistence.

We now study the identification of our object of interest. All proofs are provided in
the Appendix.
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B. Identification

To identify our parameter of interest, we begin by imposing mean independence be-
tween the idiosyncratic shocks and both parental permanent income and family fixed
effects for below-median income families. This assumption is necessary, though not suf-
ficient, for identifying the intergenerational elasticity and the conditional mean of the
fixed effects.

ASSUMPTION 1 (Mean Independence):

E
[
ϵ j | YP

j , α j,S
]
= 0.

Our identification strategy requires within-family variation in parental income, which
merits careful discussion since permanent income is conceptually time-invariant. This
mirrors the well-known non-identification of time-invariant covariates in fixed effects
panel models. In our framework, if the same measure of parental income were used for
all siblings, it would be perfectly collinear with the family fixed effects (YP

j =
∑N

s=1 1(s =
j)YP

s for every j ∈ S), undermining identification. We formalize this requirement in the
Assumption stated below.

ASSUMPTION 2 (Within-Family Variation in Parental Income): Parental permanent in-
come varies within families almost surely; that is,

YP
j < span(1n j) almost surely.

We incorporate within-family income variation by measuring parental income as the
three-year average of log family income when each child is between the ages of 13 and
21. This approach captures economically meaningful differences in parental resources
across children’s upbringing periods, reflecting real-world dynamics. For example, ca-
reer progression may increase earnings for later-born children, while economic shocks,
such as job losses, may differentially impact siblings based on their birth timing. Cru-
cially, this child-specific conceptualization of parental income directly aligns with our
research objective: by allowing parental resources to vary across siblings, we can iso-
late how family background influences children’s permanent income through channels
beyond financial resources.

To identify the object of interest, E[α j | YP
j , X j,S], it is essential to first disentangle

the influence of parental permanent income from that of family fixed effects. The key
insight is that by appropriately averaging outcomes net of the parental income component
(weighted by β), we can isolate the family fixed effect. Therefore, the identification of β
is necessary for identifying the distributional characteristics of α j. Theorem 1 therefore
establishes the identification of β, providing the foundation for our subsequent analysis
of how family background relates to economic mobility for disadvantaged children.
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THEOREM 1: Under Assumptions 1 and 2 β is identified by

β =
E
[
(YP

j )′Q jY j
]

E
[
(YP

j )′Q jYP
j

] ,
where Q j = In j −

1
n j

1n j1′n j
and the denominator is non-zero by Assumption 2.

A potential threat to the identification result in Theorem 1 is the weak identification of β.
While Assumption 2 ensures that parental income is not identical across siblings (almost
surely), it may still be highly similar, specially in families where children are born close
together. To empirically assess this concern, we calculate the intraclass correlation coef-
ficient (ICC), which measures the proportion of total variance in parental income that is
attributable to differences between families. In our sample, the ICC is 0.689, indicating
that 68.9% of parental income variance arises from between-family differences, while
the remaining 31.1% reflects meaningful within-family variation. This result suggests
that weak identification of β is unlikely to pose a significant issue in our analysis.

The following Corollary provides the theoretical foundation for identifying which fam-
ily factors most strongly predict absolute mobility. A key requirement for this analysis
is the identification of E[α j | YP

j , X j,S], which is a necessary condition for (i) accu-
rately recovering the predictive relationships between observable family characteristics
and mobility outcomes, and (ii) determining which specific family factors most strongly
influence absolute mobility.

COROLLARY 1: Under Assumptions 1–2 and E
[
ϵ j | YP

j , X j,S
]
= 0, for a fixed β, the

least squares estimator α̂OLS
j := 1

n j
1′n j

(Y j − βYP
j ) satisfies:

E
[
α̂ j | YP

j , X j,S
]
= E
[
α j | YP

j , X j,S
]
.

The standard sibling earnings models (corresponding to Equation 2) imposes the or-
thogonality assumption E

[
α jYP

j

]
= 0 to estimate the sibling correlation. In contrast,

the identification result in Corollary 1 relaxes this assumption, incorporating that family
characteristics (as captured by α j) are inherently correlated with parental income. By
explicitly conditioning on parental income while allowing for this correlation, we better
isolate the influence of family background. This approach thus provides a more nuanced
understanding of which family factors most strongly predict absolute mobility.

While Corollary 1 holds in the population, in finite samples the OLS estimates of
the family fixed effects, though unbiased, are noisy, particularly for families with few
children. As our simulations illustrate (see Section IV), shrinking offers substantial gains
when analyzing the conditional mean of α j conditional on X j, especially in a noisy and
heteroskedastic setting. In account of this, we now introduce our EB shrinkage approach
to estimates the family FEs.
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C. Empirical Bayes Estimation of Absolute Mobility

Limited within-family observations make fixed effects estimation particularly chal-
lenging, highlighting the need to refine raw OLS estimates. Although the ordinary least
squares (OLS) estimates for the FEs are unbiased, they are noisy (Gilraine et al., 2020),
especially for units (families) with few observations (children). This issue is particularly
relevant in our sample, where most families have between 2 and 5 children. A com-
mon approach that substantially improves upon the raw fixed effects estimator is based
on EB shrinkage (Armstrong et al., 2022), where the preliminary estimate is shrunken
towards a baseline value. The strength of Empirical Bayes in our framework stems from
considering the estimation of the FEs as a compound decision problem (Efron, 2012),
where many estimates of similar quantities are required, but little information for each is
available. Thus, we exploit information about other families’ transmission processes to
estimate the individual FEs.5

We adopt an empirical Bayes approach for both theoretical and empirical reasons.
Theoretically, EB is the optimal estimator under the mean squared error (MSE) criterion,
as it minimizes Bayes risk and provides the best predictor of unobserved heterogeneity
given the available data (Gaillac, 2023). Moreover, it remains optimal for estimating
averages with respect to the distribution of unobservables even under local deviations
from normality (Bonhomme and Weidner, 2022) – a crucial property given our focus on
estimating E

[
α j | X j,S

]
.

Empirically, shrinkage estimation, the key feature of EB, has demonstrated its utility
across diverse fields, including income dynamics (Gu and Koenker, 2017), healthcare
(van Houwelingen et al., 2020), and genetics (Endelman and Jannink, 2012). Notably,
it has been particularly effective in enhancing predictive accuracy when estimating in-
tergenerational mobility (Chetty and Hendren, 2018). Additionally, EB estimates are
well-justified predictors of the quality (as measured by fixed effects) of individual teach-
ers (Bonhomme and Weidner, 2022), further supporting their application in estimating
family fixed effects.

Standard parametric empirical Bayes (EB) shrinks preliminary estimates toward the
grand mean, but performs poorly for family fixed effects due to high estimation noise
from small family sizes. We address this limitation by implementing the robust EB pro-
cedure of Armstrong et al. (2022),6 which improves upon conventional EB in two key
ways. First, rather than shrinking toward a common mean, it shrinks the initial OLS
estimates α̂OLS

j toward family-specific predictions X′jγ̂ from observable characteristics.
Second, it determines optimal shrinkage intensity based on the relative variance of sam-
pling errors

(
σ2

OLS , j

)
versus effect heterogeneity

(
σ2
α, j

)
. Formally, following Armstrong

5Another notable feature of the EB approach is its adaptive shrinkage, which depends on the available information.
Families with fewer children entail noisier estimates, whereas those with more children provide more accurate estimates.
Accordingly, the EB estimates experience greater shrinkage when less information is available.

6While their method was originally designed for constructing robust EB confidence intervals, we adapt their flat prior
limited information Bayes approach to ensure positive shrinkage weights in our empirical Bayes estimator.
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et al. (2022), we assume

α̂OLS
j | α j, X j, σOLS , j ∼ N

(
α j, σ

2
OLS , j

)
,(3)

along with the working assumption that the sampling distribution of the α j is condition-
ally normal:

α j | X j, σOLS , j ∼ N
(
X′jγ, σ

2
α, j

)
.(4)

Thus, according to equation (3) and (4), the EB estimate of α j is given by

α̂EB
j = X′jγ̂ +

σ̂2
α, j

σ̂2
α, j + σ̂

2
OLS , j

(
α̂OLS

j − X′jγ̂
)
,

(5)

σ̂2
α, j = max


∑N

j=1 ω j
(
û2

j − σ̂
2
OLS , j

)
∑N

j=1 ω j
,

2
∑N

j=1 ω
2
jσ̂

4
OLS , j∑N

j=1 ω j
∑N

j=1 ω jσ̂
2
OLS , j

 , û j B α̂
OLS
j − X′jγ̂,

where the weights ω j are usually set to σ̂−2
OLS , j or 1/n.

We refer to the normality assumption in equation (4) as a “working assumption”
because the EB estimate in equation (5) neither depends on normality nor requires a
Bayesian interpretation of α j. The EB estimator has lower MSE, averaged across units,
than the unshrunk unbiased estimators, even when the individual effects are treated as
nonrandom (James and Stein, 1992).

We now describe our empirical approach to identify which family factors best predict
absolute mobility.

D. Analyzing the Relationship Between Family Background and Absolute Mobility

To identify which family factors best predict absolute mobility, we build upon the
empirical approach of Chetty et al. (2014) and Chetty and Hendren (2018). In the former
study, the authors correlate a measure of absolute mobility with local area characteristics
to examine why some CZ areas are more (upwardly) mobile than others. In the latter, the
causal effect of growing up in a particular commuting zone on children’s adult salaries is
estimated using a parametric shrinkage estimator. Subsequently, the authors identify the
characteristics of places that produce high levels of upward mobility by regressing the
causal estimates on observables.

We analyze family background’s influence on absolute mobility by relating the EB
estimates to family characteristics. To this end, we utilize the SHapley Additive exPla-
nations (SHAP) values from the explainable artificial intelligence literature (Lundberg,
2017). This approach builds upon the shapley values (Shapley, 1953), which measure
the individual contribution of players in a cooperative game. By considering variables
as players and models as coalitions in a predictive framework, SHAP values assess the
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influence of independent variables on the dependent variable. Consequently, the SHAP
values in our framework allow us to pinpoint the most relevant family factors to explain
absolute mobility and analyze their impact on children’s permanent income.

Shapley values (Shapley, 1953) allocate the surplus in a cooperative game among play-
ers. Specifically, in a coalition C of N agents, the j-th shapley value represents the fair
share of the coalition’s value (V), that agent j should receive. It is defined as

ϕ j (V) =
1
N

∑
S

[
V (S ∪ { j}) − V (S )

](
N−1

ks

) ,

where the summation is over all the subsets S , of the team T = {1, ...,N}, that one can
construct after excluding j, ks is the number of agents in the coalition S , V(S ) is the
value achieved by subteam S , and V (S ∪ {m}) is the value after j joins S . Accordingly,
the shapley value measures the average contribution of j, corresponding to her fair share.

The shapley values for regression measure the contribution of each explanatory vari-
able in predicting the outcome for each observation. In this context, agents are the ex-
planatory variables, and coalitions correspond to subsets of variables used in the model.
Intuitively, shapley values for regression are calculated by comparing the model’s pre-
dictions with and without each regressor to assess its impact. Due to the large number of
possible combinations, the SHAP values rely on an approximation (see Lundberg (2017)
for further details).

A key advantage of this approach is its ability to capture non-linear relationships
through variable importance measures. For instance, if the benefits of higher parental
education are magnified for nuclear families (a non-linear interaction), such patterns
would remain opaque to linear models. SHAP values naturally quantify these complex
effects by evaluating feature contributions across different variable combinations.

A conventional SHAP analysis of child income that jointly considers family character-
istics and parental income would identify composite predictors of economic outcomes.
However, our approach first residualizes child income with respect to parental income—a
strategy that yields two critical advantages. First, it prevents parental income from dom-
inating the explanatory power of the SHAP analysis. Second, it captures family back-
ground influences that are not transmitted via parental income.

By analyzing m
(
X j
)
B E
[
α j | YP

j , X j,S
]
, we aim to identify the key elements Z j ⊂ X j

to predict absolute mobility. To this end, we estimate the SHAP values from the machine
learning (ML) regression of α̂EB

j from equation (5) on X j. These SHAP values then allow
us to quantify feature importance.

In the context of ML, SHAP provides a unified measure of feature importance by
computing Shapley values from cooperative game theory. The importance of feature j,
denoted ϕ j, is defined as:

ϕ j =
∑

S⊆F\{ j}

|S |!(|F| − |S | − 1)!
|F|!

[
fS∪{ j}(xS∪{ j}) − fS (xS )

]
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where F is the set of all features, S is a subset of features excluding j, |S | is the size
of subset S , |F| is the total number of features, fS represents the model’s prediction
using feature subset S , and xS are the values of the features in subset S . The SHAP
value ϕ j represents the average marginal contribution of feature j across different feature
combinations. For our analysis, we normalize variable importance scores so that they
sum to 100.

Our empirical approach can be summarized in the following three-step procedure.

1) Estimate by OLS the equation

Y j − β̂YP
j = 1n jα j + ϵ j, j ∈ S ⊆ {1, ...,N} ,

to compute α̂OLS
j and σ̂OLS , j, where β̂ is the pooled OLS estimate from the regres-

sion of Y j on YP
j .

2) Construct the empirical Bayes estimator by:

a) Estimating the best linear predictor X′jγ̂ via regression of α̂OLS
j on X j

b) Computing shrinkage weights:

σ̂2
α, j = max


∑
ω j(û2

j − σ̂
2
OLS , j)∑

ω j
,

2
∑
ω2

jσ̂
4
OLS , j∑

ω j
∑
ω jσ̂

2
OLS , j


where û j = α̂

OLS
j − X′jγ̂, and ω j = σ̂

−2
OLS , j.

c) Computing the EB estimate:

α̂EB
j = X′jγ̂ +

σ̂2
α, j

σ̂2
α, j + σ̂

2
OLS , j

(α̂OLS
j − X′jγ̂).

3) Obtain the SHAP values from the ML regression of α̂EB
j on X j to compute feature

importance and estimate the effect of the most relevant family characteristics on
the predictions made by the model.

Incorporating ML into our methodology requires hyperparameter tuning. To this end,
we utilize k-fold cross-validation combined with Bayesian Grid Search (Shcherbatyi
et al., 2024), using the MSE as scoring metric.7 The primary advantage of Bayesian
optimization lies in its probabilistic modeling of the objective function, which allows

7In our application we consider two learners: Random Forest and XGBoost. For the Random Forest regressor, the
parameters for the grid search include the number of trees in the forest, the maximum depth of the trees, the minimum
number of samples required to split an internal node, the minimum number of samples required to be at a leaf node, and
the maximum number of features to consider for splitting a node. For XGBoost, we optimize nine key hyperparameters:
the learning rate, number of boosting rounds, maximum tree depth, minimum child weight, minimum loss reduction
required for node splitting, L1 and L2 regularization, subsample ratio of training instances, and feature subsampling
fraction per tree.
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it to determine the most promising hyperparameters based on previous results. This
approach significantly reduces the number of evaluations required, as it avoids the ex-
haustive search of every possible combination in a pre-defined grid.

IV. Simulations

This section presents a simulation study evaluating whether relative variable impor-
tance can be accurately recovered when fixed effects must be estimated, and how shrink-
age methods mitigate estimation noise. Our analysis reveals that our three-step proce-
dure successfully recovers both the correct ranking and relative importance of family
background characteristics, as illustrated through comparison with an Oracle benchmark
using true fixed effects. Notably, shrinkage, particularly toward the best linear predictor,
yields substantial accuracy gains, reducing mean-squared error by adaptively mitigating
noise in the fixed effect estimates.

We examine three empirical Bayes estimators. The first (BLP), shrinks α̂OLS
j towards

its best linear predictor given X j, the second (RF) towards a non-parametric estimate
from the Random Forest regression of α̂OLS

j on X j, and the third (PEB) towards the
sample mean.

As a baseline, we also consider the raw OLS estimator, which applies no shrinkage
(NS). This comparison enables us to assess the extent to which shrinkage mitigates the
three main sources of noise in OLS estimates within our framework:(i) idiosyncratic
errors ϵ j, (ii) family-level shocks v j, and (iii) family size n j. First, α̂OLS

j is computed as
the simple average of Y j − β̂YP

j , making it sensitive to within-family income variation.
Since this variation is captured by the idiosyncratic error term ϵi j, extreme child-specific
earnings can lead to its overestimation or underestimation. Second, the variance of v j
may generate outliers that distort covariate importance in SHAP analyses. Third, the
small number of observed children per family

(
n j
)
, means that each fixed effect estimate

α̂OLS
j is based on very limited data.
We simulate data using the observed covariates X j and parental income YP

j , gener-
ating children’s permanent income Y j setting β = 0.5 according to the following data
generating process (DGP):

Y j = βYP
j + 1n jα j + ϵ j, j ∈ S ⊆ {1, ...,N} , ϵ j | YP

j , α j ∼
(
0, σ2

ϵ In j

)
,

α j = m
(
X j
)
+ v j, v j | X j ∼

(
0, σ2

v j

)
.

We consider three distinct scenarios:

(i) Gaussian, homoskedastic, linear, low-noise:

ϵi j |YP
j , α j ∼ N (0, 0.1)

v j |X j ∼ N (0, 0.1)

m
(
X j
)
= 1.5 × race + 2.5 × nuclear + 0.07 × educ.
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(ii) Gaussian, heteroskedastic, linear, noisy:

ϵi j |YP
j , α j ∼ N (0, 5)

v j |X j ∼ N
(
0, 1/nc j

)
m
(
X j
)
= 1.5 × race + 2.5 × nuclear + 0.07 × educ,

where nc j is the number of children in the family according to the retrospective
inter-generation map, which might differ from n j, the number of children in family
j in the sample.

(iii) Non-Gaussian, non-linear, noisy:

ϵi j |YP
j , α j ∼ t7

(
0,
√

25/7
)

v j |X j ∼ t7
(
0,
√

25/7
)

m
(
X j
)
= 1.5 × race + 3.5 × nuclear + 1.8 × nuclear2

+ 0.1 × exp{educ/5} + 0.2 × educ × race.

Here, the scaled t-distribution with ν = 7 degrees of freedom and scale parameter
√

25/7 ensures the variance matches scenario (ii)
(
σ2
ϵ = 5

)
.

For each scenario, we simulate data according to the corresponding DGP, and perform
500 bootstrap iterations by resampling (α j, α̂

OLS
j , σ̂OLS , j, X j) N times with replacement,

denoting
(
α(b)

j , α̂
OLS ,(b)
j , σ̂(b)

OLS , j, X
(b)
j

)
the resampled dataset for iteration b. At each itera-

tion b:

1) EB estimators (BLP/RF/PEB): Implement steps 2–3 of our procedure using
(α(b)

j , α̂
OLS ,(b)
j , σ̂(b)

OLS , j, X
(b)
j ), differing only in shrinkage targets, with Random For-

est regression for the final step.

2) NS estimator: Compute SHAP values directly from Random Forest regression of
α̂OLS ,(b)

j on X(b)
j .

3) Oracle: Compute SHAP values from Random Forest regression of α(b)
j on X(b)

j ,
bypassing estimation steps.

Although only three covariates enter the DGP, we include all ten available covariates in
our analysis to reflect realistic conditions.

In the first (low-noise) scenario, we anticipate minimal differences between α̂EB
j and

α̂OLS
j for SHAP analysis, as both ϵ j and v j exhibit low variance. In the second scenario,

increased noise in ϵ j and heteroskedasticity in v j reduce the accuracy of α̂OLS
j . The

simple average of Y j − β̂YP
j becomes noisier, while heteroskedasticity causes families

with more children to have more stable fixed effects estimates by design, as they exhibit
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lower variance. Since empirical Bayes adaptively shrinks estimates based on n j, we
expect it to outperform raw OLS in this case.

The third scenario introduces heavy-tailed shocks via a t-distribution. The empirical
Bayes estimate relies on two normality assumptions: (1) the sampling distribution of
α̂OLS

j and (2) the prior distribution of α j. Neither holds here: n j is too small to rely on
the Central Limit Theorem, and we explicitly violate normality with t7 errors. Moreover,
simulating α j from the same heavy-tailed distribution creates additional challenges for
reliable inference. Furthermore, simulating α j from a heavy-tailed t−distribution, causes
both the likelihood and prior components of the empirical Bayes estimator deviate from
their assumed normal forms, creating additional challenges for reliable inference.

We incorporate nonlinearities in m(X j) to show that our procedure can reliably esti-
mate variable importance despite nonlinear relationships. However, we note that shrink-
ing α̂OLS

j toward a non-parametric estimate in step 2 does not improve upon shrinking
toward the best linear predictor. While machine learning in step 3 captures nonlineari-
ties, preliminary non-parametric shrinkage may induce regularization and model selec-
tion bias (Chernozhukov et al., 2022) both in α̂EB

j and for the SHAP analysis.
We assess estimator performance through two key metrics. First, we measure ranking

accuracy—the frequency with which each method correctly orders variables by their rel-
ative importance across bootstrap replicates. Second, we compute the mean squared error
(MSE) of the importance estimates, which captures both bias and precision in quantify-
ing each variable’s contribution. Both metrics use the Oracle estimates as ground truth,
where the ranking reflects the true relative variable importance observed in each boot-
strap sample.

Table 2—: Percentage of Correct Variable Rankings by Feature and Estimator, Across
Scenarios

Oracle BLP RF PEB NS

Scenario (i): Gaussian, homoskedastic, linear, low-noise
Race 100 100 100 100 100
Family Structure 100 100 100 100 100
Education 100 100 100 100 100

Scenario (ii): Gaussian, heteroskedastic, linear, noisy
Race 100 93.6 93.8 91.0 94.4
Family Structure 100 93.6 92.6 91.0 93.8
Education 100 83.0 76.0 78.8 78.8

Scenario (iii): Non-Gaussian, non-linear, noisy
Race 100 100 100 100 100
Family Structure 100 100 100 99.8 99.8
Education 100 100 100 99.8 99.8



16

Table 2 presents the ranking accuracy results, revealing distinct patterns across simula-
tion scenarios. Under the favorable conditions of Scenario (i), all estimators—including
raw OLS—perfectly recover the true variable rankings (100% accuracy), indicating that
shrinkage offers no improvement in this dimension when the setting is well-behaved. In
Scenario (ii), ranking accuracy remains high across all estimators. The two most influ-
ential variables—Race and Family Structure—are correctly ranked in over 91% of boot-
strap samples by every estimator. Accuracy for the less informative Education variable
drops more substantially, ranging from 76.0% to 83.0%. The BLP estimator achieves
slightly higher accuracy for this variable, but the differences across estimators are small.
These results indicate that even in more challenging settings, the most important vari-
ables tend to be reliably identified, and any gains from shrinkage in terms of ranking are
present but subtle.

Scenario (iii) introduces both non-Gaussian errors and nonlinearities, yet all estimators
continue to perform remarkably well. BLP maintains perfect ranking accuracy for all
variables, while PEB and NS only misclassify Family Structure and Education in one
bootstrap sample out of 500. Overall, the results suggest that ranking performance is
generally resilient to noise, non-Gaussianity, heteroskedasticity and non-linearities, with
only marginal gains from shrinkage in more complex settings. While the correct ranking
is unsurprising given that the three scenarios only includes three variables, the consistent
performance across challenging conditions remains noteworthy.

Table 3—: Oracle Mean, Bias, Variance, and MSE by Feature and Estimator, Across
Scenarios

Bias Variance MSE

Feature Oracle Mean BLP RF PEB NS BLP RF PEB NS BLP RF PEB NS

Scenario (i): Gaussian, homoskedastic, linear, low-noise

Race 51.75 -1.45 -1.01 -2.04 -1.99 2.29 2.72 2.37 2.37 4.38 3.75 6.52 6.33
Family Structure 34.32 0.94 0.72 0.07 0.10 3.60 3.78 3.60 3.61 4.48 4.30 3.61 3.62
Education 11.83 -1.66 -2.08 -2.05 -2.11 1.69 2.21 1.90 1.94 4.44 6.54 6.13 6.37

Scenario (ii): Gaussian, heteroskedastic, linear, noisy

Race 52.07 -5.18 -5.40 -12.02 -10.72 15.49 31.75 21.43 21.37 42.28 60.89 165.94 136.34
Family Structure 33.70 -1.12 -5.94 -7.07 -8.37 21.64 36.75 23.30 24.89 22.88 72.08 73.34 94.91
Education 11.46 -0.67 -2.26 -1.32 -2.15 14.63 12.94 6.98 7.84 15.07 18.05 8.72 12.49

Scenario (iii): Non-Gaussian, non-linear, noisy

Race 55.18 -2.22 -2.84 -4.17 -4.23 4.68 5.55 4.93 4.88 9.62 13.63 22.29 22.77
Family Structure 27.65 -1.04 -1.19 -1.81 -1.91 5.53 6.46 5.96 5.95 6.61 7.88 9.24 9.59
Education 12.46 -0.07 -0.06 -0.51 -0.19 4.61 5.15 4.21 4.12 4.62 5.16 4.47 4.16

Table 3 presents the bias, variance, and MSE of estimated relative variable importance
across bootstrap iterations, broken down by feature and estimator. All results use the
Oracle relative importance at each bootstrap iteration as the ground truth across our three
scenarios.

In the low-noise setting of Scenario (i), all estimators closely approximate the Oracle
benchmark, with only minor differences in variance. For example, Race importance esti-
mates range narrowly from 49.72 (PEB) to 50.74 (RF), with consistently low variances.
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As a result, MSE differences are modest—RF achieves the lowest Race MSE (3.75), edg-
ing out BLP (4.38) by just 0.63; PEB performs slightly better in Family Structure (3.61
vs. BLP’s 4.48); and BLP holds a modest advantage in Education (4.44 vs. PEB’s 6.13).
These findings align with theoretical expectations: when estimation noise is negligible,
the unshrunk OLS estimator performs comparably to shrinkage-based alternatives, of-
fering little room for improvement through regularization. However, the more realistic
Scenarios (ii) and (iii) reveal BLP’s consistent superiority.

While BLP underestimates the most important variable in Scenario (ii), it exhibits
a remarkable precision-accuracy tradeoff. For the two most important variables, Race
and Family Structure, it achieves both the lowest variance (15.49 and 21.64) and mean
estimates closest to the Oracle (46.89 vs. 52.07; 32.59 vs. 33.70). Although its variance
for Education is slightly higher than RF’s (14.63 vs. 12.94), BLP offers better accuracy
(10.79 vs. 11.46). In contrast, PEB and NS substantially underestimate key predictors,
with larger variances and pronounced bias, e.g., Race importance drops to 40.05 (PEB)
and 41.35 (NS). These advantages translate into substantially lower MSEs for BLP: for
Race, its MSE (42.28) is nearly four times smaller than PEB’s (165.94) and three times
smaller than NS’s (136.34); for Family Structure, BLP outperforms NS by a factor of four
(22.88 vs. 94.91). Although RF’s flexibility may seem beneficial in theory, in practice it
results in overfitting, with MSEs 45% higher for Race (60.89 vs. 42.28) and over three
times higher for Family Structure (72.08 vs. 22.88). Overall, BLP’s parametric shrinkage
provides robust performance, maintaining both stability and accuracy in a challenging
setting.

Scenario (iii) provides compelling evidence for the robustness of shrinkage estima-
tion. Despite non-Gaussian error distributions, BLP maintains superior performance,
with mean estimates closest to the Oracle benchmark across all variables8 and consis-
tently achieves the lowest variance among all estimators (except in Education, where
PEB and NS perform slightly better). The MSE results are particularly striking: BLP at-
tains 9.62 for Race (versus NS’s 22.77), 6.61 for Family Structure (versus 9.59), and 4.62
for Education (versus 4.16), demonstrating remarkable resilience to violated assump-
tions. While RF shows modest improvements over PEB and NS, its higher variance
(5.55 versus BLP’s 4.68 for Race) highlights the inherent accuracy-precision tradeoff.
Crucially, BLP’s advantage is most pronounced for the most influential variables, where
it achieves substantially lower MSE. These findings indicate that shrinkage preserves
significant advantages over unshrunk OLS even under non-Gaussian conditions, though
the benefits are somewhat less dramatic than in Scenario (ii)’s heteroskedastic setting.

This last setting illustrates that nonparametric shrinkage offers no advantage over lin-
ear shrinkage, despite the true nonlinear DGP. While machine learning in step 3 captures
nonlinear patterns, preliminary nonparametric shrinkage in step 2 introduces regulariza-
tion and model selection bias (Chernozhukov et al., 2022) both in α̂EB

j and for the SHAP
analysis. This result suggests that shrinking toward the best linear predictor yields more
reliable estimates, even when the true relationship is nonlinear. Moreover, BLP’s lower
variance relative to RF across the three scenarios reflects the fundamental trade-off be-

8The only exception is Education, where BLP and RF show negligible differences.
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tween parametric models and flexible ML methods (James et al., 2021).
Our simulation exercise highlights the robustness and stability of the BLP estimator

across a range of data-generating environments. While gains are modest under ideal con-
ditions, BLP consistently outperforms alternative estimators as noise increases or classi-
cal assumptions break down. Its ability to balance bias and variance makes it particularly
well suited for applied settings where data are limited and estimation error is a concern.
The results underscore the practical value of shrinking towards the best linear predictor,
offering stable and interpretable estimates of variable importance even in complex, noisy,
or misspecified environments.

The results in Table 3 are consistent with theoretical expectations: EB estimation min-
imizes Bayes risk and achieves MSE-optimality, yielding accurate predictions of un-
observed heterogeneity (Gaillac, 2023). However, this superior predictive performance
does not automatically translate to better variable importance estimation. SHAP analysis
evaluates importance through mean absolute SHAP values, a distinct metric that may
not directly reflect MSE optimization. While EB improves global prediction accuracy,
its shrinkage properties may inadvertently affect the relative importance of individual
features in finite samples.

The key finding from our simulations is that EB estimation offers meaningful advan-
tages in our framework—particularly in noisy and heteroskedastic settings. These ben-
efits are most pronounced when shrinking toward the best linear predictor, an approach
that combines theoretical rigor with operational stability. Although the relationship be-
tween MSE and SHAP values requires nuanced interpretation, the EB approach delivers
more stable estimates of relative variable importance while being theoretically grounded.
In summary, these results support our proposed procedure for identifying the family
characteristics that best predict absolute mobility, highlighting its potential for empirical
research on intergenerational mobility.

V. Results

Our analysis reveals race and family structure as the strongest predictors of abso-
lute mobility. As depicted in Figure 1 (a), SHAP analysis indicates that, conditional
on parental income, race (white vs. non-white) explains 35% of the total variable im-
portance among family background characteristics. Being raised in a nuclear family,
defined as a household with a head, a spouse (if present), and children, accounts for
22.4%. Other relevant factors include the household’s age at first birth (10.5%), num-
ber of children (9.4%), and education (9.3%). Other factors show negligible predictive
power, collectively accounting for less than 14% of the explained variation. The results
regarding family structure gain additional significance when contextualized within the
dramatic 19-percentage-point decline in two-parent households between 1960 (87.7%)
and 2016 (68.7%) documented by U.S. Census Bureau (2017).

Figure 1 (b) displays results that additionally control for birth cohort and regional fixed
effects. As a robustness check, we account for generational differences (birth cohorts:
pre-1940 [reference], 1940–49, 1950–59, 1960+) and geographic variation (U.S. regions:
North Central, Northeast, West, with South as reference). These controls help isolate the
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(a) Baseline (b) Controlling for Cohort and Regional
Fixed Effects

Figure 1. : Relevance of Family Background Characteristics in Shaping Absolute Mo-
bility

The importance of explaining absolute mobility is computed according to the average SHAP values (in
absolute value), and normalized so that the sum of variable importance adds up to 100.

relationship between family characteristics and absolute mobility from temporal trends
or regional disparities. The variables ranked third to fifth show some reordering due to
their nearly equivalent contributions. However, the top two predictors (race and family
structure) maintain their rank order. These results indicate that temporal and regional
factors contribute relatively little to explaining absolute mobility after accounting for
family background characteristics.

Previous research has highlighted the importance of family structure in shaping in-
tergenerational mobility. Kearney (2023) examines the widening economic disparities
linked to family structure, emphasizing that children raised in stable two-parent house-
holds tend to achieve higher educational attainment and greater upward mobility. While
past research has emphasized the challenges faced by children of single mothers, Kear-
ney (2023) underscores how the decline in stable marriages has deepened class divisions,
noting that the economic and social advantages of two-parent families are now increas-
ingly concentrated among higher-income households, thereby exacerbating inequality.

These findings align with McLanahan and Percheski (2008), who highlights the role of
family structure in perpetuating class, race, and gender inequalities, and with Chetty et al.
(2014), who finds that regions with weaker family structures exhibit significantly lower
levels of intergenerational mobility. Similarly, Bloome (2017) underscores the long-term
economic consequences of family instability, showing that children raised outside stable
two-parent families are less likely to attain high-income status in adulthood compared to
their peers from stable two-parent households.

Our descriptive analysis offers a distinct perspective on these well-documented rela-
tionships. Whereas much existing work compares single- versus two-parent households,
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our methodology captures the relative importance of nuclear family structure within a
broader set of mobility determinants. The observed patterns suggest that the documented
decline in two-parent households may relate to mobility outcomes through multiple com-
positional changes, not only through increases in single-parent families but potentially
through other family structures as well. In particular, our findings suggest that the role
of family structure in intergenerational mobility extends beyond the single- versus two-
parent household distinction.

The relevance of family structure stands out, particularly since it is conditional on
parental income. In the absence of this adjustment, one might attribute the association
to income dilution, where resources are spread more thinly in certain household struc-
tures.However, by excluding this pathway, the findings emphasize the relevance of family
structure through non-monetary channels.

Figure 1 reinforces well-documented racial disparities in intergenerational mobility.
Hertz (2005) highlights the low rate of upward mobility for black families at the bottom
of the income distribution, which is further corroborated by Bloome (2014), who shows
that black children are more likely than white children to remain in the lowest income
quintile. Moreover, Chetty et al. (2014) finds that both blacks and whites living in areas
with large African American populations, such as the Southeast of the U.S., experience
lower rates of upward mobility. Segregation is identified as a key mechanism behind this
trend, with more racially segregated areas exhibiting lower mobility and underscoring
the importance of racial context in shaping mobility outcomes. Building on this, Davis
and Mazumder (2018) explores the geographic dimension of mobility, revealing that the
low mobility in the Southeast, as documented by Chetty et al. (2014), is primarily driven
by the low mobility of whites. In contrast, blacks raised in the Southeast experience
higher mobility than those raised in the Northeast and Midwest.

Beyond supporting the well-documented racial gaps in intergenerational mobility, our
results underscore the crucial role of family structure, which emerges as the second
strongest predictor—a dynamic that is particularly striking in light of racial disparities
in family composition. Notably, 68% of white children in our sample were consistently
raised in nuclear families, compared to just 35% of non-white children (see Figure 3).
Together, these findings align with existing work on how family structure differences may
contribute to persistent racial mobility gaps (McLanahan and Percheski, 2008), offering
new descriptive evidence into this ongoing conversation.

Figure 2 presents SHAP scatter plots for the five most influential predictors of absolute
mobility. Each plot illustrates the marginal relationship between a given variable and
its impact on mobility, quantified by SHAP values. Individual observations (families)
are represented as points, where the x-axis indicates the observed value of the predictor
variable and the y-axis shows the corresponding SHAP value, a measure of the variable’s
directional effect on mobility. Positive SHAP values reflect positive shifts in absolute
mobility outcomes, while negative values the opposite. The dispersion of points reveals
heterogeneity in how these key factors influence outcomes across families.

The top-left panel in Figure 2 reveals stark racial patterns in absolute mobility. Non-
white individuals cluster in the negative SHAP value range, reflecting systematically
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Figure 2. : SHAP scatter plots for the five most influential variables in predicting absolute
mobility.

Note: the impact on absolute mobility is measured by the SHAP value for each of the five variables in the
figure. The dots in each figure depict the SHAP value of the corresponding variable for an individual in
the sample, highlighting that the effect of each characteristic on absolute mobility is heterogeneous across
individuals.

lower mobility outcomes compared to their white counterparts, who show consistently
positive SHAP values. In the top-center panel, the probability of being raised a nuclear
family shows a nonlinear relationship with mobility. Below a 0.9 probability, SHAP
values are predominantly negative. Beyond this threshold, the trend reverses sharply:
households with higher probabilities of being nuclear exhibit positive SHAP values, sug-
gesting that a nuclear family structure is associated with mobility advantages.

The top-right panel tracks household head age at first birth, revealing a gradual tran-
sition from negative to positive SHAP values. Early parenthood (before age 27) aligns
with worse mobility outcomes, while delayed childbearing correlates with progressively
higher SHAP values. These findings align with established literature documenting that
children of younger parents face greater risks of health, social, and economic disadvan-
tages compared to those raised by older parents (Hofferth and Reid, 2002).

The bottom-left panel in Figure 2 examines the relationship between the number of
children in a family and absolute mobility. The results indicate a nuanced pattern: fami-
lies with 2-4 children show a modest positive association with mobility, though the effect
size is relatively small. In contrast, families with more than four children show a clear
negative association with mobility. Similar to our findings for nuclear families, these
results operate independently of income effects, indicating that the observed patterns
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reflect more than just income dilution.
Finally, the bottom-left panel analyzes parental education level. SHAP values remain

mostly negative for individuals whose parents have fewer than 12 years of education,
highlighting that lower parental education is associated with lower mobility. However,
once parental education reaches 12 years (high school completion), SHAP values be-
come positive, and they continue to rise as education increases. Given that parental
income is held constant in our analysis, these results suggest the observed positive asso-
ciation likely captures non-monetary advantages associated with education (Vila, 2005;
Heckman et al., 2018).

Figure 3. : Histogram for the Most Relevant Characteristics by Race

Note: Primary includes primary school or less, High School covers more than primary but no higher than
high school, and Higher Education refers to any education beyond high school.

The data reveal pronounced racial disparities in family structure, educational attain-
ment, and the number of children, though we find no systematic differences in the head’s
age at first birth. As shown in Figure 3, white children are far more likely to be raised in
nuclear families (68%) compared to non-white children (35%). Additionally, while 38%
of white parents have two children, only 22% of non-white parents do. Educational at-
tainment also varies by race. Although the proportion of parents with more than primary
but no higher than a high school education is similar across groups (65% for whites vs.
68% for non-whites), disparities emerge in other categories. Non-white households are
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overrepresented in primary education (15% vs. 3% for white households), whereas white
households are more likely to have higher education (29% vs. 20%). These racial dispar-
ities in family structure and educational attainment may jointly contribute to widening
gaps in absolute mobility.

VI. Conclusions

This paper provides a descriptive analysis of how family background influences the
permanent income of children born in low-income households. Our proposed measure
of mobility corresponds to the family fixed effect in the regression of children’s perma-
nent income on parental permanent income. This object captures the families’ ability
to boost their children’s permanent income, conditional on parental income. To address
estimation challenges arising from limited data for families, we employ an Empirical
Bayes approach that improves the accuracy of our fixed effect estimates. We then ana-
lyze the relative importance of different family background characteristics using SHapley
Additive exPlanations (SHAP), a unified framework for interpreting predictive models
that allows us to quantify the contribution of each factor while accounting for potential
nonlinearities and interactions.

Our analysis suggests that racial disparities in mobility persist, with family structure
playing a significant role. In particular, we identify race and family structure as the most
powerful predictors of absolute mobility, with race explaining 35% of predictive impor-
tance and nuclear family structure accounting for 22.4%, conditional on parental income.
Notably, the difference in nuclear family prevalence between white (68%) and non-white
(35%) children sheds light on the connection between family structure and racial mobil-
ity gaps. Other influential factors include the household’s age at first birth, the number of
children and parental education. Importantly, our methodology holds parental income
constant, isolating the effects of family background and excluding income-mediated
channels.

Given the descriptive nature of our findings, future research should investigate the
causal mechanisms linking family background to absolute mobility. The framework de-
veloped by Gaillac (2023) provides a promising approach, as it enables estimation of
individual-level causal effects in settings like ours. Applying this approach could yield
important insights regarding two key questions: (1) how the decline of two-parent house-
holds in the U.S. has affected intergenerational mobility, and (2) the extent to which fam-
ily structure differences contribute to persistent racial disparities in mobility outcomes.
Such analysis would provide a deeper understanding of how family background shapes
economic opportunity across generations.



24

References

Armstrong, T. B., Kolesár, M., and Plagborg-Møller, M. (2022). Robust empirical bayes
confidence intervals. Econometrica, 90(6):2567–2602.

Bingley, P., Cappellari, L., and Tatsiramos, K. (2017). Family, community and life-cycle
earnings: Evidence from siblings and youth peers. Technical Report 6743, Center for
Economic Studies & Ifo Institute.

Björklund, A., Jäntti, M., and Solon, G. (2007). Nature and nurture in the intergener-
ational transmission of socioeconomic status: Evidence from swedish children and
their biological and rearing parents. The BE Journal of Economic Analysis & Policy,
7(2).

Bloome, D. (2014). Racial inequality trends and the intergenerational persistence of
income and family structure. American sociological review, 79(6):1196–1225.

Bloome, D. (2017). Childhood family structure and intergenerational income mobility
in the united states. Demography, 54(2):541–569.

Bonhomme, S. and Weidner, M. (2022). Posterior average effects. Journal of Business
& Economic Statistics, 40(4):1849–1862.

Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., and Robins, J. M.
(2022). Locally robust semiparametric estimation. Econometrica, 90(4):1501–1535.

Chetty, R. and Hendren, N. (2018). The impacts of neighborhoods on intergenera-
tional mobility ii: County-level estimates. The Quarterly Journal of Economics,
133(3):1163–1228.

Chetty, R., Hendren, N., Kline, P., and Saez, E. (2014). Where is the land of opportunity?
the geography of intergenerational mobility in the united states. The Quarterly Journal
of Economics, 129(4):1553–1623.

Cholli, N. A., Durlauf, S. N., Landersø, R., and Navarro, S. (2024). Understanding the
heterogeneity of intergenerational mobility across neighborhoods. Technical report,
National Bureau of Economic Research.

Corcoran, M., Gordon, R. H., Laren, D., and Solon, G. (1990). Effects of family and com-
munity background on economic status. The American Economic Review, 80(2):362–
366.

Corcoran, M., Jencks, C., and Olneck, M. (1976). The effects of family background on
earnings. The American Economic Review, 66(2):430–435.

Davis, J. and Mazumder, B. (2018). Racial and ethnic differences in the geography of
intergenerational mobility. Available at SSRN 3138979.



25

Efron, B. (2012). Large-scale inference: empirical Bayes methods for estimation, testing,
and prediction, volume 1. Cambridge University Press.

Endelman, J. B. and Jannink, J.-L. (2012). Shrinkage estimation of the realized relation-
ship matrix. G3: Genes— genomes— genetics, 2(11):1405–1413.

Gaillac, C. (2023). Predicting unobserved individual-level causal effects.

Gilraine, M., Gu, J., and McMillan, R. (2020). A new method for estimating teacher
value-added. Technical report, National Bureau of Economic Research.

Gu, J. and Koenker, R. (2017). Unobserved heterogeneity in income dynamics: An
empirical bayes perspective. Journal of Business & Economic Statistics, 35(1):1–16.

Heckman, J. J., Humphries, J. E., and Veramendi, G. (2018). The nonmarket benefits of
education and ability. Journal of human capital, 12(2):282–304.

Hertz, T. (2005). Rags, riches, and race. Unequal chances: Family background and
economic success, 165:165–91.

Hofferth, S. L. and Reid, L. (2002). Early childbearing and children’s achievement and
behavior over time. Perspectives on Sexual and Reproductive Health, pages 41–49.

Jacob, B. A. and Lefgren, L. (2008). Can principals identify effective teachers? evi-
dence on subjective performance evaluation in education. Journal of labor Economics,
26(1):101–136.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An Introduction to Statistical
Learning with Applications in R. Springer Texts in Statistics. Springer, 2nd edition.
ISBN 978-1-0716-1417-4.

James, W. and Stein, C. (1992). Estimation with quadratic loss. In Breakthroughs in
statistics: Foundations and basic theory, pages 443–460. Springer.

Kane, T. J. and Staiger, D. O. (2008). Estimating teacher impacts on student achievement:
An experimental evaluation. Technical report, National Bureau of Economic Research.

Kearney, M. S. (2023). The two-parent privilege: How americans stopped getting mar-
ried and started falling behind. In The Two-Parent Privilege. University of Chicago
Press.

Lundberg, S. (2017). A unified approach to interpreting model predictions. arXiv
preprint arXiv:1705.07874.

McLanahan, S. and Percheski, C. (2008). Family structure and the reproduction of in-
equalities. Annu. Rev. Sociol, 34(1):257–276.

Shapley, L. S. (1953). A value for n-person games. Contribution to the Theory of Games,
2.



26

Shcherbatyi, I., Louppe, G., and Head, T. (2024). Scikit-learn hyperparam-
eter search wrapper. https://scikit-optimize.github.io/stable/auto_

examples/sklearn-gridsearchcv-replacement.html. Accessed: 2025-02-27.

U.S. Census Bureau (2017). Living arrangements of children under 18 years old: 1960
to present. Retrieved from U.S. Census Bureau website.

van Houwelingen, H. C., Brand, R., and Louis, T. A. (2020). Empirical bayes methods
for monitoring health care quality. arXiv preprint arXiv:2009.03058.

Vila, L. E. (2005). The outcomes of investment in education and people’s well-being.
European journal of education, 40(1):3–11.

https://scikit-optimize.github.io/stable/auto_examples/sklearn-gridsearchcv-replacement.html
https://scikit-optimize.github.io/stable/auto_examples/sklearn-gridsearchcv-replacement.html


27

Appendix

Proof of Theorem 1

To identify the expectation of the family fixed effect for below-median income families
E
[
α j | S

]
, we start by defining the following two objects:

Q j = In j −
1
n j

1n j1
′
n j

(within-family centering matrix)

H j =
1
n j

1′n j
(family averaging operator).

The row vector H j allows us to isolate family effects by exploiting the conditional mean
independence assumption:

E
[
H j(Y j − βYP

j ) | YP
j ,S
]
= E
[
H j1n jα j + H jϵ j | YP

j ,S
]

= E
[
α j | YP

j ,S
]
+ E
[
H jϵ j | YP

j ,S
]

= E
[
α j | YP

j ,S
]
,

where the last equality follows because:

E
[
H jϵ j | YP

j ,S
]
= H jE

[
ϵ j | YP

j ,S
]

= 0 (by Assumption 2).

We now integrate out the parental income variation to obtain the conditional expectation:

E
[
E
[
H j(Y j − βYP

j ) | YP
j ,S
]
| S
]
= E
[
E
[
α j | YP

j ,S
]
| S
]

= E
[
α j | S

]
.

The key insight is that by appropriately averaging outcomes net of the parental income
component (weighted by β), we can isolate the family fixed effect. Thus, identification
of β is necessary for identifying the distributional characteristics of α j.

The centering matrix Q j identifies β through the moment condition:

E
[
(YP

j )′Q jϵ j
]
= 0 (by Assumption 2)

E
[
(YP

j )′Q j(Y j − 1n jα j − YP
j β)
]
= 0

By construction, Q j1n j = 0, so the last display boils down to:
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E
[
(YP

j )′Q jY j
]
= βE

[
(YP

j )′Q jYP
j

]
,

yielding the population estimand for β:

β =
E
[
(YP

j )′Q jY j
]

E
[
(YP

j )′Q jYP
j

]
Thus, for identification of β, we require:

E
[
(YP

j )′Q jYP
j

]
, 0.

This condition is guaranteed by Assumption 2, which states that that Y jP < span(1n j)
almost surely—meaning parental income must exhibit within-family variation.

This condition has two immediate implications. First, it requires that families have
multiple children (n j > 1), since when n j = 1, Q j = 0 and within-family variation
cannot be assessed. Second, since the centering matrix Q j projects any vector onto the
subspace orthogonal to 1n j , when YP

j lies entirely within the span of 1n j — that is, if
YP

j = 1n jY
P
j for some scalar YP

j — then

E
[
(YP

j )′Q jYP
j

]
= 0.

Thus, when parental permanent income is constant across siblings β is not identified in
equation (1). As a result, the distributional characteristics of α j are not identified either.

Proof of Corollary 1

By the conditional mean independence E
[
ϵ j | YP

j , X j,S
]
= 0 we have that

E
[
α̂ j | YP

j , X j,S
]
= E

[
1
n j

1′n j

(
Y j − βYP

j

)
| YP

j , X j,S

]
= E

[
1
n j

1′n j

(
1′n j
α j + H jϵ j

)
| YP

j , X j,S

]
= E

[
α j +

1
n j

1′n j
ϵ j | YP

j , X j,S

]
= E
[
α j | YP

j , X j,S
]
.Q.E.D.


