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1 Introduction

In recent decades, assessing poverty vulnerability has become increasingly important in

the development literature, largely due to the various shocks that the world has faced.

Natural disasters have become more frequent and severe (Cred, 2020), motivating the

enhancement of the existing tools for studying the impact of climate shocks on poverty

vulnerability.

This paper proposes an inferential framework for designing targeted, place-based pub-

lic policies to prevent and mitigate climate risk. For this purpose, we formalize and

generalize the simulation approach to climate vulnerability of Hill and Porter (2017).

Specifically, we show that their proposal can be posed as an out-of-sample predictive

problem and applied to estimate functions of vulnerability measures, such as the char-

acteristics of the most vulnerable. Furthermore, our generalization allows estimating

a wide class of functions, e.g., the heterogeneous impact of specific climate shocks on

future consumption.

Hill and Porter’s approach-henceforth HPA-, consists of estimating poverty vulner-

ability by simulating the probable distribution of future consumption using historical

data on different shocks. Specifically, it (1) estimates with ordinary least squares (OLS)

the conditional mean function (m (·)) relating consumption to household characteristics

and shocks, (2) simulates future consumption using historical data on shocks with m̂ (·),
and (3) computes a measure of vulnerability with the simulated future consumption.

While the HPA considers death, job loss, price, and climate shocks, this paper focuses

on the latter.

Our formalization of the HPA motivates adopting a Machine Learning (ML) approach

for simulating future consumption. The second step of the HPA consists of predicting

the dependent variable Y for test data (Xtest) as Ŷ = m̂(Xtest) = X⊺
testβ̂. Thus,

it simulates (predicts) future consumption using household characteristics and histor-

ical climate (test) data, which corresponds to an out-of-sample prediction problem.

Consequently, estimating m (·) should involve regularization to avoid overfitting. Fur-

thermore, since the effect of climate shocks on consumption is likely to be heterogeneous

across households and regions, the conditional mean function m (·) is potentially non-

linear. As a result, utilizing ML to simulate future consumption provides an appealing

approach, because it estimates m (·) non-parametrically, providing high model com-

plexity while involving regularization to attain better out-of-sample predictive accuracy

than OLS.

The third step of the HPA provides a measure of vulnerability. For instance, each
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realization of future consumption for household i can be compared to the poverty line

to establish the proportion of times (pi) that consumption falls below the poverty line.

This way, the vulnerability measure proposed by Pritchett et al. (2000) can be estimated

as the proportion of households whose pi exceeds 0.5. Alternatively, an analogous

procedure can be undertaken for estimating different vulnerability measures, such as

those proposed in Chaudhuri et al. (2002) and Calvo and Dercon (2013).

The estimated vulnerability can be further exploited to characterize the vulnerable

population. Hill and Porter (2017) compute different vulnerability measures by gender

and rural/urban status, which can be extended to unveil the most salient features of the

vulnerable, e.g., uneducated, working in the primary sector. Moreover, calculating the

vulnerability rate by region pinpoints the regions with the highest poverty risk. These

estimates contribute to the effective design of place-based policies targeted to the most

vulnerable.

Analyzing the effect of climate shocks on future consumption offers valuable informa-

tion for preventing climate risk. Characterizing the vulnerable provides crucial insights

for reducing climate risk. However, it does not address the impact of specific climate

shocks. To overcome this limitation, we analyze the relationship between simulated fu-

ture consumption and climate shocks to pinpoint the most affected regions by specific

climate shocks.

We utilize the SHapley Additive exPlanations (SHAP) values proposed in Lundberg

(2017) to unveil the most salient features of the vulnerable and estimate the heteroge-

neous impact of climate shocks on future consumption. SHAP values provide a measure

of feature importance, enabling the identification of the most salient characteristics of

vulnerable individuals. Furthermore, they measure the impact of the independent vari-

ables on the dependent variables by observation, which can be utilized to assess the

heterogeneous effect of climate shocks on future consumption.

The main contribution of this paper is presenting an easy-to-implement procedure

to design targeted, place-based public policies to reduce climate risk. To estimate

functions of vulnerability, our proposal consists of four stages: (1) estimating the con-

ditional mean function relating consumption (or income) to individual characteristics

and climate shocks with Machine Learning, (2) simulating future consumption using

individual characteristics and historical data on climate shocks with the estimated con-

ditional mean, (3) predicting the individual vulnerability status according to their sim-

ulated future consumption, and (4) estimating the function of vulnerability. When

the function is known, we propose to estimate its sample counterpart.1 Conversely,

1For instance, to characterize the vulnerable individuals, we can compute averages for binary vari-
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for unknown functions, we propose computing the SHAP values from a classification

model by regressing the estimated vulnerability status on individual characteristics and

climate shocks. To estimate unknown functions of future consumption, we follow the

same procedure but omit the third step.

Our method can be applied to short panels and cross-sectional data. Similar to the

multi-level (e.g., Skoufias and Quisumbing (2003) and Günther and Harttgen (2009))

and simulation approaches (e.g., Hill and Porter (2017)) to poverty vulnerability, our

proposal does not require the availability of lengthy panel data on income or consump-

tion. In particular, it only requires survey data with household or individual character-

istics and historical climate data at the community or regional level. In our empirical

application, we utilize publicly available climate data, illustrating that practitioners

need only to count on survey data, and merge it with this dataset to implement our

procedure.

We illustrate our proposal with an empirical application to Ecuador, a country with

high exposure to climate risk and high vulnerability. Ecuador is one of the most biodi-

verse countries in the world (Kleemann et al., 2022), with 96 percent of its population

living in coastal and mountainous regions that are exposed to several natural hazards

(World Bank, 2014). According to the Survey of Life Conditions (Encuesta de Condi-

ciones de Vida) carried out by the Instituto Nacional de Estad́ıstica y Censos (INEC),

around one out of four households is at risk of poverty or social exclusion (INEC, 2023).

We construct a panel for the period 2007–2021 consisting of climate and individual

data. We consider four climate shocks: maximum and minimum temperatures, floods,

and droughts. We draw the data from the Climatic Research Unit of the University

of East Anglia (Harris et al., 2020),2 which provides gridded Time Series information

at a spatial resolution of approximately 1 km². We merge the climate data with the

National Survey conducted by INEC, yielding a pool of nearly 400,000 individuals.

Our empirical results suggest that individuals aged 25-45 with less than primary

education are most likely to be vulnerable. Furthermore, we find that the vulnerable

are mostly informal individuals working in the primary sector and living in rural areas,

located in the Amazonian Region, which motivates implementing a targeted place-

based formalization policy. Our analysis underscores the need for preventive measures

in Imbabura and Pastaza. While the former ranks among the three provinces most

ables and the empirical cumulative distribution function for continuous variables. Furthermore, pro-
vided information on whether individuals live in rural areas and their age, we can estimate the pro-
portion of vulnerable individuals working in the primary sector and the distribution of age of the
vulnerable.

2The data can be accessed at https://www.worldclim.org/data/.
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affected by droughts and floods, the latter is among the most affected by maximum

temperatures and droughts.

The remainder of the paper proceeds as follows: section 2 formalizes the simulation

approach proposed in Hill and Porter (2017) as an out-of-sample prediction problem,

and motivates the adoption of a machine learning approach for simulating future con-

sumption. Section 3 generalizes the simulation approach to climate vulnerability by

extending it to prevent and mitigate climate risk, and presents the proposed estimation

approach. Section 4 presents our application to Ecuador, and section 5 concludes.

2 A Formalization of the Simulation Approach to

Climate Vulnerability

Our point of departure is the estimation of a measure of vulnerability V , which de-

pends on future consumption Ct+1, the poverty line z, and an exogenous parameter α.

Accordingly, our object of interest can be defined as

V := g (Ct+1, z, α) , (1)

where g (·) is known up to Ct+1, z, and α. Thus, if the distribution of future consumption

were known, we could compute the vulnerability measure provided values for z and α.

Equation (1) encompasses a wide class of vulnerability measures. To begin with,

consider the expectation of poverty as proposed by Chaudhuri et al. (2002)

V = g (Ct+1, z, α) = E
[(

max

{
0,

z − Ct+1

z

})α]
,

where the parameter α determines whether the object of interest is the headcount

(α = 0), the poverty gap (α = 1), or the squared gap (α = 2). Another example of

equation (1) is the measure proposed by Pritchett et al. (2000), where the higher the

probability that the future consumption falls below the poverty line, the higher the

probability that an individual is vulnerable, so that equation (1) boils down to

V = g (Ct+1, z, α) = P (Ct+1 ≤ z) > α,

where α is commonly set to 0.5. Finally, assuming a constant relative risk-sensitive

measure as in Calvo and Dercon (2013), would result in a vulnerability measure of the
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type

V = g (Ct+1, z, α) =
1

α

(
1− E

[(
Ct+1

z
× 1 (Ct+1 < z) + z × 1 (Ct+1 ≥ z)

)α])
.

Because future consumption is unknown, we need to estimate it to measure vulnera-

bility. The proposal of Hill and Porter (2017) consists of simulating the probable distri-

bution of future consumption conditional using household characteristics and historical

data on different shocks. In this paper, we focus on climate shocks. To formalize their

approach, consider the decomposition of consumption into observed and unobserved

components as

C = m (X,S;η) + ϵ, E [ϵ|X,S] = 0, (2)

where X and S are individual characteristics and climate shocks, respectively, m (·) :=
E [C|X,S] is the conditional mean function, known up to the nuisance parameter η,3

and ϵ is an idiosyncratic shock, corresponding to the unexplained component.

The Hill and Porter’s approach is motivated by the fact that if we were to know m (·),
η, and the distributions of the climate and idiosyncratic shocks, future consumption

can be simulated as

Cm
t+1 = m (X,Sm;η) + ϵm, (3)

Sm ∼ FS,

ϵm ∼ Fϵ,

where FS and Fϵ are the distribution of the climate and idiosyncratic shocks, respec-

tively, and Sm and ϵm are draws from their respective distributions. Thus, by drawing

Cm
t+1 enough times (say M), we could approximate the distribution function of future

consumption, and consequently compute the vulnerability measure in equation (1).

We now formalize the HPA in the following three-step procedure

1. Estimate the equation relating consumption (C) to household characteristics (X)

and climate shocks (S)

C = m (X,S;η) + ϵ, E [ϵ|X,S] = 0,

3For instance, if we assume that m (·) is linear, the nuisance parameter η corresponds to the
regression coefficients. We provide a characterization of the conditional mean function and the nuisance
parameter for the case of tree-based algorithms and kernel machines in the Appendix
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by Ordinary Least Squares, assuming

m (X,S;η) = X ′β + S
′
δ + S

′
X̃ ′γ, (4)

where X̃ is a subset ofX so the effect of climate shocks on consumption is allowed

to depend on individual characteristics.

Thus, the estimated conditional mean function is given by

m̂ := m (X,S; η̂) = Z̃ ′
(
Z̃Z̃ ′

)−1

Z̃ ′C := Z̃ ′η̂, Z̃ ′ :=
(
X ′,S′,S

′
X̃ ′

)′
,

and the empirical cumulative distribution function (E.C.D.F) of the residuals

ϵ̂ := C − Z̃ ′η̂ is given by

F̂ϵ(e) =
1

n

n∑
i=1

1
(
Ci − Z̃ ′

iη̂ < e
)
:= En [1 (Ci −m (Xi,Si; η̂) < e)] ,

where En [·] is the empirical expectation operator.

2. Simulate M times the future consumption by drawing climate shocks and idiosyn-

cratic shocks from their E.C.D.F

Ĉm
t+1 = m (X,Sm; η̂) + ϵm = Z̃m′

η̂ + ϵm, m = 1, ...,M, (5)

Sm ∼ F̂S, F̂S(s) = En [1 (Si < s)] ,

ϵm ∼ F̂ϵ, F̂ϵ(e) = En [1 (Ci −m (Xi,Si; η̂))] ,

where Z̃m′
:=

(
X ′,Sm′)′

.

Compute

Ĉt+1 ∼ F̂C , F̂C(c) =
1

M

M∑
m=1

1
(
Ĉm

t+1 < c
)
,

so that

Ĉt+1 = f (C,X, ϕ,m) , ϕ := (FS, Fϵ) . (6)

Thus, simulated future consumption depends on the observed consumption, in-

dividual characteristics, the distribution function of climate and idiosyncratic

shocks, and the conditional mean function.
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3. Estimate the vulnerability measure in equation (1) as

V̂ = g
(
Ĉt+1, α, z

)
. (7)

The aforementioned procedure involves estimating the unknown distribution functions

and a conditional mean. To illustrate this point, consider plugging equation (6) into

equation (7), so that we can reparametrize the object of interest as

V̂ = g
(
Ĉt+1, z, α

)
:= f̃ (C,X, ϕ,m, z, α) .

Thus, the estimated measure of vulnerability depends on consumption and individual

characteristics (C,X), unknown distribution functions (ϕ), the conditional mean func-

tion (m), and exogenous values (z, α). Because the data and the poverty line are given,

and the exogenous value α is defined ad-hoc for the analysis, we only need to estimate

the conditional mean and the unknown distribution functions.

The HPA estimates the distribution of future consumption, climate, and idiosyncratic

shocks with the E.C.D.F. This is justified by the Glivenko-Cantelli Theorem, which

establishes that

||Fn − F ||∞ := supx∈R|Fn(x)− F (x)| → 0 a.s., (8)

where F is the common cumulative distribution of the random variables X1, ..., XM

which are independent and identically distributed in R, and

Fn(x) :=
1

M

M∑
m=1

1 (Xm < x)

is the empirical cumulative distribution function of {Xi}Mi=1 evaluated at x. Equation

(8) shows that the E.C.D.F. converges uniformly to the true distribution function almost

surely. Thus, the E.C.D.F. is a consistent estimator for the C.D.F., which justifies the

HPA to estimate the unknown distribution functions.

The key aspect of estimating the conditional mean function is that its purpose is to

perform out-of-sample prediction. As illustrated by equation (5), to simulate future

consumption, we evaluate the estimated conditional mean function on out-of-sample

(test) data, which is, by definition, out-of-sample prediction. Thus, estimating m (·)
should involve regularization to avoid overfitting. Additionally, since the effect of cli-

mate shocks on consumption is likely to be heterogeneous across households and regions,

the conditional mean function m (·) is potentially non-linear.
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Estimating the conditional mean function by OLS entails a substantial loss in the

predictive accuracy of future consumption. Because the effect of climate shocks on

consumption varies across households and regions, the conditional mean function m (·)
is potentially non-linear. Furthermore, as illustrated by equation (5), the simulation

of future consumption corresponds to an out-of-sample predictive problem, so the esti-

mation of m (·) should be flexible enough to account for non-linearities and should also

involve regularization to avoid overfitting.

The linearity assumption of OLS can be partially addressed by projecting the covari-

ates into some high-dimensional space using basic feature-space functions. For instance,

by projecting covariates into the space of powers t(x) = (1, x, x2, x3, ...)
′
, or incorporat-

ing interactions between them, in the spirit of equation (4). Whenever the functions

are independent of the parameters, the model is still linear on the parameters (Williams

and Rasmussen, 2006).

The HPA to overcome the linearity assumption is interacting a subset of individual

characteristics with climate shocks based on economic rationale. Even though this

practice helps to avoid overfitting by omitting variables, it is not data-driven and could

entail a substantial loss in accuracy. Furthermore, this approach allows for shock het-

erogeneity across individuals but not across regions. While certain mechanisms are

inherently tied to specific household characteristics (indirect effect), the forces pro-

pelling individuals into poverty are partly external (direct effect). Thus, the extent to

which shocks affect individuals depends on their characteristics and the socioeconomic

and geographic characteristics of the region in which they live. Despite this can be

internalized by interacting climate shocks with regional dummies, it would exacerbate

the need for regularization.

Adopting a ML approach incorporates the predictive nature of simulating future

consumption. To begin with, it provides high model complexity by modeling non-

parametrically the conditional mean function, relaxing the linearity assumption of OLS.

Furthermore, it involves regularization, which avoids overfitting. Thus, our formaliza-

tion of the HPA motivates adopting a ML approach for simulating future consumption.

Despite its benefits, the machine learning approach induces bias in predicting the

vulnerability status. This issue arises from the regularization and model selection bias

introduced by the models used to estimate the conditional mean (Chernozhukov et al.,

2022). Thus, errors in the out-of-sample consumption prediction would affect the esti-

mated vulnerability status. Specifically, individuals could be misclassified as vulnerable

when their future consumption is not well approximated. However, this limitation also

arises in OLS estimation for different reasons. First, the linearity assumption causes the
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future consumption to be poorly approximated. Second, the inclusion of interactions

without regularization can lead to over-fitting (Hawkins, 2004).

In this section, we have formalized the HPA to climate vulnerability, highlighting

the advantages of adopting a ML approach for simulating future consumption. While

ML shares some limitations with OLS, the former approach provides better predictive

accuracy through higher model complexity and regularization, enabling more accurate

estimation of vulnerability. We now turn to illustrate how the HPA can be extended

to estimate functions of future consumption to reduce climate risk.

3 An Inferential Framework to Reduce Climate Risk

3.1 Estimating Functions of Future Consumption

Equation (1) shows that we can estimate a measure of vulnerability by simulating future

consumption. We now generalize this object of interest to allow for a more general

setting in which we are interested in functions of future consumption. In particular,

we focus on the estimation of a parameter θ, which is a function h (·) depending on

individual characteristics, climate shocks, future consumption, the poverty line z, and

an exogenous parameter α

θ = h (Z, Ct+1, z, α) , (9)

where
(
Z := (X ′,S′)′

)
. We first focus on a particular case of equation (9), where

the object of interest depends on individual characteristics, climate shocks, and the

individual vulnerability status Vi, which is determined according to the vulnerability

measure of Pritchett et al. (2000)

Vi = 1 (P (Ci,t+1 ≤ z) > α) , i = 1, ..., n. (10)

In particular, our object of interest has the form

θ = h (Z, Ct+1, z, α) = h̃ (Z, V ) , (11)

where in the second equality we have used equations (9) and (10), and V is a vector

with information on the vulnerability status for every individual.

Equation (11) generalizes the objects of interest in Hill and Porter (2017). In their em-

pirical application, the authors estimate five different vulnerability measures by gender

9
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and rural/urban status, which can be formalized as

θ = h̃ (Z, V ) = V|Z,

where Z is the conditioning variable (gender and rural/urban status).4

The main implication of equation (11) is that the HPA can be used to estimate

functions of vulnerability. More importantly, as we will now show, it can be applied to

the design of targeted, place-based policies to prevent and mitigate climate risk. We

now illustrate with a motivating example how equation (11) can be used to characterize

the vulnerable

Consider the object of interest in equation (11) is given by

θ = h̃ (Z, V ) = FX|V=1 (x) = P (X1 ≤ x1, ..., Xr ≤ xls|V = 1) , (12)

where FX|V=1 (x) is the joint cumulative distribution function of the vulnerable’s char-

acteristics, and ls is the cardinality of X. For instance, if individual characteristics only

include the age of the individual (age) and a dummy variable (prim) which equals 1 if

the individual works in the primary sector and zero otherwise, we have that equation

(12) boils down to

FX|V=1 (x) = P (age1 ≤ x1, prim ≤ x2|V = 1) ,

with corresponding marginal distributions given by

Fage(a) = E [1 (age ≤ a) |V = 1] ,

and

Fprim(a) = E [1 (prim ≤ a) |V = 1] .

If we were to find that the majority of the vulnerable are old individuals working in the

primary sector, the government could target efforts towards this population aiming to

prevent climate risk.

To motivate our proposal to identify the most salient characteristics of vulnerable,

consider estimating equation (10) using the first two steps of the HPA. Thus, according

4Notice that the measure of vulnerability V summarizes in a scalar the vector V with information
on the individual vulnerability status.
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to equation (5), we have

V̂i = 1
(
P
(
Ĉi,t+1 ≤ z

)
> α

)
:= h

(
Ci,Xi, ϕ̂, m̂, z, α

)
, ϕ̂ :=

(
F̂S, F̂ϵ

)
, (13)

so the individual vulnerability measure, can be expressed as a function of individual

characteristics (and others). This arises from the fact that to simulate future con-

sumption using the HPA, we keep fixed individual characteristics (see equation (5)).

Accordingly, to identify the most salient characteristics of the vulnerable we propose

estimating

θ = h̃ (Z, V ) = h̃ (X, V ) = ∇XVi =


∂P (Vi=1)

∂X1
...

∂P (Vi=1)
∂Xlx

 , i = 1, ...n, (14)

where ∇XVi denotes the gradient of the individual probability of vulnerability with

respect to individual characteristics.

Equation (14) captures the relationship between the vulnerability status and the in-

dividual characteristics. The usefulness of this object is two-fold. First, it provides a

measure of variable importance, in the sense that, the variables with the highest im-

pact on the probability of being vulnerable correspond to the most salient attributes

of the vulnerable. Second, it allows us to characterize the most vulnerable households.

For instance, if we were to find that ∂P (Vi=1)
∂Age

is U-shaped, the youngest and oldest are

the most vulnerable. Conversely, if the derivative is constant and negative, the most

vulnerable are the youngest.

One limitation of the simulation approach is that the vulnerability status does not

depend on the realized shocks individuals have been exposed to. Even though V̂i de-

pends on the estimated distribution of the climate shocks
(
F̂s

)
, it does not depend on

the realized shocks Si. For this reason, we cannot undertake a similar approach to that

of equation (14) to study the impact of climate shocks on vulnerability.

Although we cannot assess the effect of climate shocks on vulnerability, we can ana-

lyze their impact on future consumption. According to equation (5), simulated future

consumption depends on individual characteristics and the draws of climate shocks.

Thus, in the same spirit as equation (14), we can study the heterogeneous impact of

11
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climate shocks on future consumption by estimating

θ = h (Z, Ct+1, z, α) = h
(
S, Cm

t+1

)
= ∇SC

m
i,t+1 =


∂m
i,t+1

∂S1
...

∂m
i,t+1

∂Sls

 , i = 1, ...n, (15)

where ∇SC
m
i,t+1 is the gradient of a realization of the individual future consumption

with respect to climate shocks, and ls is the cardinality of S. Similar to equation

(14), equation (15) informs us about the most affected when a specific climate shock

occurs. Since the derivates are computed for each individual, and we observe individual

characteristics, we can identify the most affected individuals and regions by specific

climate shocks. This way, the government can focus efforts on preventive actions to

reduce climate risk. For instance, local governments in the most affected regions by

floods can target efforts to reduce debris and waste in the drainage system to reduce

blockages. Conversely, the most affected regions by maximum temperatures can invest

in cool roofs and increase urban greenery.5

In this section, we have generalized the HPA by showing that their proposal can be

extended to estimate functions of future consumption. Additionally, we have illustrated

how estimating equations (14) and (15) allow the design of targeted, place-based pub-

lic policies to prevent and mitigate climate risk. We now describe our proposal for

estimating these two equations.

3.2 Estimation Procedure

In Section 2 we have highlighted the benefits of modeling consumption as a function of

individual characteristics and climate shocks with ML. Before turning to the estimation

procedure, we first illustrate how the ML approach can be complemented with novel

tools from the explainable artificial intelligence literature to reduce poverty risk. In

particular, we show that equations (14) and (15) can be estimated by computing the

SHAP values proposed in Lundberg (2017).

The SHAP values build upon the Shapley values (Shapley, 1953), which dictate how

the surplus in a cooperative game should be allocated among players. In particular, in

a coalition C of N agents, the j-th Shapley value corresponds to the fair share of the

5For evidence on cool roofs and urban greenery reducing temperature, see Macintyre and Heaviside
(2019) and Dekić et al. (2018), respectively
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value of the coalition (V ), that each agent j should receive, which is given by

ϕj (V ) =
1

N

∑
S

[V (S ∪ {j})− V (S)](
N−1
ks

) ,

where the summation is over all the subsets S, of the team, T = {1, ..., N}, that one

can construct after excluding j, ks is the number of agents in the coalition S, V (S) is

the value achieved by subteam S, and V (S ∪ {m}) is the realized value after j joins

S. Thus, ϕj (V ) measures the average contribution of j, which should be his/her fair

share.

The Shapley values for regression evaluate the effect of every variable in a model

in predicting an outcome for each observation. In a predictive framework, the agents

correspond to each explanatory variable, and coalitions correspond to a given model

using a subset of the explanatory variables. Intuitively, the Shapley values for regression

are computed by estimating each possible model with and without each regressor, to

assess its impact in predicting the dependent variable. However, since there are many

potential combinations, the SHAP values rely on an approximation of the Shapley

values (for a detailed formulation see Lundberg (2017)).

We propose computing the SHAP values to estimate equations (14) and (15). In our

framework, the SHAP values measure the impact of every variable on vulnerability

and welfare outcomes. Thus, they provide estimates for our two equations of interest.

Consequently, by computing the SHAP values we can characterize the most vulnerable

to climate shocks and estimate the heterogeneous effect of specific climate shocks on

future consumption.

Our proposal to estimate functions of vulnerability can be formalized in the following

four-step procedure

1. Estimate the equation relating consumption (C) to individual characteristics (X)

and climate shocks (S)

C = m (X,S;η) + ϵ, E [ϵ|X,S] = 0,

with machine learning, yielding the non-parametric estimate of the conditional

mean m (X,S; η̂), and the E.C.D.F of the residuals ϵ̂ := C−m (X,S; η̂) is given

by

F̂ϵ(e) =
1

n

n∑
i=1

1
(
Ci − Z̃ ′

iη̂ < e
)
:= En [1 (Ci −m (Xi,Si; η̂) < e)] .

13



D
ra
ft

2. Simulate M times the future consumption by drawing climate and idiosyncratic

shocks from their E.C.D.F

Ĉm
t+1 = m (X,Sm; η̂) + ϵm, m = 1, ...,M,

Sm ∼ F̂S, F̂S(s) = En [1 (Si < s)] ,

ϵm ∼ F̂ϵ, F̂ϵ(e) = En [1 (Ci −m (Xi,Si; η̂))] .

Compute

Ĉt+1 ∼ F̂C , F̂C(c) =
1

M

M∑
m=1

1
(
Ĉm

t+1 < c
)
,

3. Compute the individual vulnerability status using

V̂i = 1
(
P
(
Ĉi,t+1 ≤ z

)
> α

)
, i = 1, ..., n.

4. Estimate equation (11) as

θ̂ = ˆ̃h
(
Z, V̂

)
, V̂ =

(
V̂1, ..., V̂n

)
.

When h̃ is known (e.g., a conditional mean, or a vulnerability measure for a

subgroup), then ˆ̃h is the sample counterpart of h. Conversely, when h is unknown,

we propose estimating it using the SHAP values from a classification model by

regressing the estimated vulnerability status on individual characteristics and

climate shocks.

The main differences between our proposal and the HPA lie in steps 1 and 4. To

begin with, instead of estimating the conditional mean with OLS, we perform non-

parametric estimation with ML. In contrast, steps 2 and 3 are the same as in the HPA,

with the subtle difference that in step 3, we do not compute a vulnerability measure,

but keep the individual vulnerability status. Furthermore, step 4 encompasses a wide

class of objects of interest, including vulnerability measures for the whole population

and subpopulations (such as male/female and rural/urban status as in Hill and Porter

(2017)), and equation (14).

A critical note on the first step is that, since machine learning methods are proposed,

practitioners must conduct hyperparameter tuning to avoid overfitting. Care must

also be taken to ensure this process does not assign zero weights to the climate shock

variables, as doing so would restrict step 2 to only idiosyncratic shocks and individual

14
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or household characteristics.

To estimate functions of future consumption, we follow the following procedure

1. Estimate the equation relating consumption (C) to individual characteristics (X)

and climate shocks (S)

C = m (X,S;η) + ϵ, E [ϵ|X,S] = 0,

with machine learning, yielding the non-parametric estimate of the conditional

mean m (X,S; η̂), and the E.C.D.F of the residuals ϵ̂ := C−m (X,S; η̂) is given

by

F̂ϵ(e) =
1

n

n∑
i=1

1
(
Ci − Z̃ ′

iη̂ < e
)
:= En [1 (Ci −m (Xi,Si; η̂) < e)] .

2. Simulate future consumption one time by drawing climate and idiosyncratic shocks

from their E.C.D.F

Ĉm
t+1 = m (X,Sm; η̂) + ϵm,

Sm ∼ F̂S, F̂S(s) = En [1 (Si < s)] ,

ϵm ∼ F̂ϵ, F̂ϵ(e) = En [1 (Ci −m (Xi,Si; η̂))] .

3. Estimate equation (9) as

θ̂ = ĥ
(
Z, Ĉm

t+1, z, α
)
.

When h is known, then ĥ is the sample counterpart of h. Conversely, when h is

unknown, we propose estimating it using the SHAP values from a regression model

by regressing the simulated future consumption on individual characteristics and

climate shocks.

We now illustrate how our proposal can be used to design targeted, place-based public

policies to reduce climate risk, by applying it to the case of Ecuador.

4 Application

We construct a panel for the period 2007–2021 consisting of climate and individual-

level data. We draw the temperature and precipitation data from the CRU-TS 4.06

(gridded Time Series of the Climatic Research Unit of the University of East Anglia,
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for details see (Harris et al., 2020)) downscaled with WorldClim 2.1 (Fick and Hijmans,

2017). Our dataset comprises historical monthly weather data at a spatial resolution

of approximately 1 km2 for temperature and precipitation. This enables us to obtain

the information at the parish level, which is the most detailed identification of the

geographical location provided by the available household survey.

We gather information on four climate shocks: maximum and minimum temperature,

floods, and droughts. The maximum and minimum temperatures correspond to the

most extreme temperatures in a given parish during the year. The flood and drought

variables are constructed based on the 3-month Standardised Precipitation Index (SPI-

3), which measures the deficit and surplus of precipitation accumulated over 3 months.

Following the literature (McKee et al., 1993), a drought event starts when the SPI-3

values fall below -1 and ends when the index returns positive. The magnitude of the

drought is given by the sum of the SPI-3 during the drought event. Similarly, a flood

even starts when the SPI-3 values fall above 1 and ends when the index returns negative,

and the magnitude of the drought is given by the sum of the SPI-3 during the flood

event.

We merge the climate data with data from the National Survey of Employment,

Unemployment, and Underemployment (Encuesta Nacional de Empleo, Desempleo y

Subempleo, ENEMDU), conducted by INEC. Our dependent variable is the per-capita

household income variable used by INEC to compare with the poverty line to determine

whether or not a household is poor. We also have information on whether the individuals

live in a rural area, their relationship to the head of the household, informality and self-

employment status, sex, whether the individual interviewed works in the primary sector

(agriculture, hunting, forestry, fishing, and mining and quarrying), education level, and

age. The pooling of data from the surveys of individuals merged with the climate data

yields an individual-level data set with 395,988 observations. Our data set comprises

information for every province in Ecuador, except for Galápagos, Santo Domingo, and

Santa Elena. Thus, we have information for 206 parishes, belonging to 21 provinces.

As indicated in the four-step procedure, to estimate functions of a vulnerability mea-

sure, we first perform XGBoost Regression to estimate the equation relating consump-

tion to individual characteristics (including year and province dummies) and climate

shocks. In doing so, we obtain estimates for the conditional mean function and the

E.C.D.F. of the residuals. The hyperparameters for the XGBoost Regression are se-

lected via k-fold cross-validation. In particular, we split the dataset into training and

test sets, and define a parameter grid covering various values for learning rate, maxi-

mum tree depth, number of estimators, and column sampling by tree. We then evaluate
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combinations of these parameters using 2 folds. The grid search process identifies the

parameter set that achieves the highest accuracy on the training data, enabling us to

select the most effective model configuration while minimizing the risk of overfitting.

Second, we simulate M = 5, 000 times future consumption by drawing climate and

idiosyncratic shocks from their E.C.D.F. We draw the former at the province level,

while the latter at the national level. That is, to simulate the climate shocks we uti-

lize the E.C.D.F. within the province to which each individual belongs,6 and for the

idiosyncratic shocks, we use the E.C.D.F. for the whole sample. Third, we estimate the

individual vulnerability based on the simulated future income. Finally, we estimate four

variants of equation (11), namely, the regional vulnerability rate, summary statistics

of individual characteristics, feature importance, and the effect of each characteristic

on predicting poverty vulnerability. For the latter two objects, we compute the SHAP

values from a classification model where the dependent variable is the estimated vulner-

ability status, and the independent variables are individual characteristics and climate

shocks.

Our findings suggest that poverty vulnerability is concentrated in the Amazonian

region of Ecuador. Figure 1 reports the vulnerability rate by province for the year

2021, depicting that Morona Santiago, Napo, and Pastaza are the most vulnerable

provinces. We find that poverty vulnerability is concentrated in the Amazonian region

of Ecuador, suggesting that place-based policies should target the eastern region of the

country.

We summarize the regional dynamics of poverty vulnerability from 2007 to 2021 in Fig-

ures 2 and Table 1. Figure 2 depicts the evolution of poverty vulnerability by province,

illustrating that poverty vulnerability in Bolivia has generally declined. However, most

provinces experienced an increase in vulnerability between 2019 and 2020, followed by a

subsequent decrease in 2021. Table 1 presents the ranking of each province based on its

level of poverty vulnerability, where a higher rank indicates greater vulnerability. The

table also displays the most frequent rank, as well as the minimum and maximum ranks

observed. Table 1 shows that Morona Santiago, Napo, and Pastaza—the provinces with

the highest vulnerability in 2021—have consistently ranked among the most vulnerable

since 2007. Additionally, Manabi and Carchi, which ranked 4th and 5th in 2021, have

remained in the top five most vulnerable provinces over the years. Surprisingly, Pastaza

ranked 16th in 2007 and 14th in 2008. However, since 2009, it has remained among

6The stratified sampling for the climate shocks aims to simulate “reasonable” climate shocks for
every individual. Thus, we only consider climate shocks that have occurred in the individual’s province.
Even though we have information at the parish level, we stratify at the province level to obtain more
variability.
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Figure 1: Estimated Vulnerability Rate by Province, 2021
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the most vulnerable provinces. Lastly, except for 2011, Morona Santiago has been the

most vulnerable province in the country, underscoring the need for targeted efforts to

reduce vulnerability.

Figure 2: Dynamics of Poverty Vulnerability by Province, 2007–2021
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The vulnerable are mostly informal individuals, working in the primary sector, and

living in rural areas. In Table 2 we report the average values for individual characteris-

tics for the vulnerable and the entire population. By comparing both averages for the

same variable, we isolate potential compositional effects.7 We also find no systematic

differences as regards gender, head, and civil status. Concerning self-employment sta-

tus, we find that the proportion of vulnerable self-employed workers is higher than the

7If the vast majority of the sample is informal, finding that the vulnerable are mostly informal
might result from the composition of the labor market.
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Table 1: Rank of Provinces According to Poverty Vulnerability (descending), 2007–2021

Morona Napo Manabi Pastaza Carchi Sucumbios Bolivar Esmeraldas Loja Chimborazo Zamora Orellana Pichincha Imbabura Azuay Cotopaxi Tungurahua Los Rios Cañar Guayas El Oro
2007 1 4 3 16 2 10 7 9 5 11 6 8 18 15 12 17 13 14 19 20 21
2008 1 2 7 14 5 13 6 3 4 9 8 16 19 12 15 17 18 11 10 20 21
2009 1 4 5 2 3 12 8 6 10 15 9 13 11 7 14 19 17 18 16 20 21
2010 1 2 3 4 5 14 6 7 9 11 10 19 8 17 15 12 18 16 13 20 21
2011 2 5 3 1 7 4 10 9 6 11 8 20 14 15 17 18 13 16 12 19 21
2012 1 8 4 5 3 7 2 9 6 12 11 10 14 15 16 17 13 18 19 20 21
2013 1 3 6 5 4 8 9 7 2 11 10 14 13 16 12 19 17 15 18 20 21
2014 1 3 9 2 4 8 5 10 7 11 6 12 17 19 16 13 18 15 14 20 21
2015 1 3 7 2 4 5 8 10 9 11 6 12 13 19 15 14 17 16 18 20 21
2016 1 2 10 3 6 7 5 11 9 8 4 12 14 18 16 13 15 19 17 20 21
2017 1 2 12 3 4 6 7 9 10 8 5 11 14 16 17 13 19 18 15 20 21
2018 1 5 6 3 2 4 12 7 9 10 11 8 17 13 14 15 16 18 19 20 21
2019 1 5 11 4 2 6 13 3 8 7 10 9 19 12 16 14 17 18 15 20 21
2020 1 2 3 8 6 4 9 7 5 13 11 10 14 12 20 17 16 15 19 18 21
2021 1 2 4 3 5 8 10 6 7 12 11 9 13 15 16 19 14 18 17 20 21

Mode 1 2 3 3 4 4 7 9 9 11 11 12 14 15 16 17 17 18 19 20 21
Min 1 2 3 1 2 4 2 3 2 7 4 8 8 7 12 12 13 11 10 18 21
Max 2 8 12 16 7 14 13 11 10 15 11 20 19 19 20 19 19 19 19 20 21

Table 2: Average Values for Individual Characteristics, Vulnerable vs. Entire Sample

Characteristic Vulnerable Entire Sample
Informal 0.95 0.61
Rural 0.95 0.40
Primary 0.86 0.31
Male 0.60 0.58
Head 0.47 0.47
Married 0.44 0.41
Self-employed 0.44 0.32
Age 36.96 39.29
Education 6.19 9.57

self-employed workers in the whole sample. Finally, we find that the vulnerable tend

to be younger, and less educated.

The most relevant characteristics to predict poverty vulnerability are living in the

rural/urban area, education level, working in the primary sector, informality status, and

age. Figure 3 reports the variable importance of individual characteristics in explaining

vulnerability. To compute variable importance, we follow the literature (Rodŕıguez-

Pérez and Bajorath, 2019) by averaging the SHAP values across all individuals (in

absolute value), and normalizing the outcomes so that the sum of variable importance

adds up to 100.8 Consistent with Table 2, Figure 3 illustrates that these five variables

are the most salient characteristics of the vulnerable. Furthermore, the importance of

the remaining variables is also in line with the mean difference in Table 2.

Figure 4 summarises the impact of the most relevant variables (as measured by the

SHAP values) on poverty vulnerability. The dots in each figure depict the SHAP value

of the corresponding variable for an individual in the sample, highlighting that the effect

of each characteristic on the probability of poverty vulnerability is heterogeneous across

8The fact that education and age play a similarly important role than primary, rural and informal
might arise from multicollinearity. For this reason, we complement the analysis with summary statistics
and do not interpret individual variable importance.
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Figure 3: Variable Importance of Individual Characteristics in Explaining Vulnerability

The importance of explaining poverty vulnerability in Figure 3 is computed according to the average SHAP values (in
absolute value), and normalized so that the sum of variable importance adds up to 100.

individuals. For instance, if working informally were to affect homogeneously individual

vulnerability, all points would lie in the same value along the y-axis. However, we find

that for every variable, the effect varies across individuals. In the case of the continuous

variables (age and education), we find that the effect is not only heterogeneous for a

given value but is also nonlinear.

The results in Figure 4 are in line with those of Table 2. In particular, we find

that working in the primary sector, living in rural areas, and being an informal worker

increase the probability of being vulnerable. Furthermore, older and more educated

individuals are less likely to be vulnerable.

We find a negative relationship between education and vulnerability. Individuals who

have completed at most primary schooling are more likely to be vulnerable, while those

with secondary schooling or more are less likely to be vulnerable. Furthermore, we find

that the relationship is non-linear, with a decreasing slope after two years of schooling,

which turns flat for those having at least secondary schooling.

Individuals aged 25 to 45 are the most vulnerable, as indicated by the upward spikes

on the graph. This age group may face challenges such as family responsibilities, un-

stable income, or job market pressures, which contribute to their vulnerability. Poverty

vulnerability decreases steadily after the age of 45, with the trend moving closer to

or below the zero impact line. Such a decline could be linked to increased financial

stability, savings accumulation, or reduced household demands.
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Figure 4: Effect of Individual Characteristics on Poverty Vulnerability by Informality
Status

Note: the impact on poverty vulnerability is measured by the SHAP value for each of the five variables in the figure.
The dots in each figure depict the SHAP value of the corresponding variable for an individual in the sample, highlighting
that the effect of each characteristic on the probability of poverty vulnerability is heterogeneous across individuals.

Implementing a formalization policy can prevent poverty vulnerability. Moreover, our

results suggest that this policy should prioritize low-educated individuals aged 25-45,

working in the primary sector, living in rural areas in the Amazonian region of Ecuador.

Our findings also suggest that long-term policies aiming to elevate the education level

of those with less than high school can potentially reduce poverty vulnerability.

We now turn to estimating the heterogeneous impact of specific climate shocks on

future income. We first identify the most affected provinces by each climate shock by

focusing attention on the most extreme values of each climate variable. This is due to

the fact that our definition of the climate variables captures low, moderate, and high

levels of each. For instance, the lowest or average maximum temperature recorded in

our data does not correspond to a climate shock. Similarly, a very mild flood or drought

can be hardly considered a shock. Accordingly, to identify the most affected provinces

by each climate shock we focus attention on the events that can be considered a shock.

For the case of extreme temperatures, we compute the average SHAP values for the

four most extreme temperatures recorded in each province. Thus, for maximum tem-

peratures, we only consider the highest four maximum temperatures by region, while

for minimum temperatures, the lowest four. Similarly, we compute the average SHAP

values for droughts and floods considering the tails of the distributions (the top quartile
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for droughts, since they take negative values, and the bottom quartile for floods).

Figure 5 reports the impact of each climate shock on income by province. We find

that the most affected regions by maximum temperatures are located in the center-

east of the country. In particular, Pastaza, Pichincha, Azuay, and Morona Santiago

emerge as the most vulnerable areas. In contrast to maximum temperatures, we find

that minimum temperatures disproportionately affect the North and South regions.

The most affected regions are located in the north and south of the Pacifical Coastal

Region (Esmeraldas, and El Oro, respectively). However, we also find that minimum

temperatures impact the northern part of the Andes and Amazonian region, since Napo

Pichincha, and Orellana are the most affected apart from Esmeraldas and El Oro.

Figure 5: Impact of Specific Climate Shocks on Future Income by Province
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(b) Minimum
Temperature
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(c) Floods
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(d) Droughts

The impact of each climate shock corresponds to the average SHAP value for the events that could be classified as shocks.
For maximum temperatures, we only consider the highest four maximum temperatures by region, while for minimum
temperatures, the lowest four. Similarly, we compute the average SHAP values for droughts and floods considering the
tails of the distributions (the top quartile for droughts and the bottom quartile for floods)

Our findings suggest that Napo, Tungurahua, and Imbabura are the most affected

provinces by extreme floods. Except for Napo and Zamora Chinchipe, we find that

the Amazon Region is the least affected by extreme floods. Conversely, the Andes and

Pacific Coastal regions experience the highest decrease in future income arising from

floods. Regarding droughts, our analysis reveals that both the Andes and the Amazo-

nian regions are heavily affected. The incidence of lack of precipitations is particularly

pronounced in Imbabura, Pastaza, and Orellana. These findings highlight the hetero-

geneous nature of climate risks across regions, emphasizing the need for targeted and

context-specific policy responses to mitigate both flood and drought impacts.

Figure 5 highlights the regions most affected by specific climate shocks. Imbabura

ranks among the three provinces most affected by droughts and floods, underscoring the

urgent need for preventive measures to mitigate vulnerability to excessive and deficient

precipitation. Similarly, Pastaza stands out as highly vulnerable, being one of the

provinces most affected by maximum temperatures and droughts.
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5 Concluding Remarks

In this paper, we formalize and generalize the simulation approach of Hill and Porter

(2017). We first show that their proposal involves out-of-sample prediction, which mo-

tivates the adoption of machine learning techniques to simulate future income. We then

generalize their procedure to estimate functions of vulnerability and welfare outcomes.

To estimate unknown functions of vulnerability and welfare outcomes we draw from

the explainable artificial intelligence literature, by computing SHapley Additive exPla-

nations (SHAP) values. This approach enables the characterization of the vulnerable

population to poverty due to climate shocks. Furthermore, our proposal allows the

identification of the regions with the greatest vulnerability rates. The former capability

reveals the potential drivers of vulnerability, indicating who is the most vulnerable at

the regional level, and the latter provides useful information for the design of place-

based public policy.

This paper presents an easy-to-implement procedure to design targeted, place-based

public policies to reduce climate risk. An important appeal of our proposal is that it

can be applied to short panels and cross-sectional data. In our empirical application

to Ecuador, we illustrate how our method provides useful information for the design of

targeted place-based policies to prevent and mitigate climate risk.
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Appendix

Consider the decomposition of consumption into observed and unobserved components

as

C = m (X,S;η) + ϵ, E [ϵ|X,S] = 0,

where X and S are individual characteristics and climate shocks, respectively, m (·) :=
E [C|X,S] is the conditional mean function, known up to the nuisance parameter η,

and ϵ is an idiosyncratic shock, corresponding to the unexplained component. Assuming

linearity ofm (·), the nuisance parameter correspond to the regression coefficients. Since

our proposal involves estimating m (·) non-parametrically, we now characterize it for

the case of tree-based algorithms and kernel machines.

Trees form a partition9 of the covariate space into J regions R := (R1, ..., RJ), by

finding the J regions and coefficients C := (C1, ..., CJ) and solving the optimization

OLS problem (for a fixed value of R)

argmin
c

1

n

n∑
i=1

(Yi −m (Xi,Si, η))
2 , m (Xi,Si,η) =

J∑
j=1

cj1 (Xi,Si ∈ Rj) ,

for the training set,10 where the solution to the above optimization problem is given by

Ĉ = (ĉ1, ..., ĉJ) (ĉj = Y j is the average outcome in the Rj region). Thus, for tree-based

algorithms, we have

m (Xi,Si,η) =
J∑

j=1

cj1 (Xi,Si ∈ Rj) ,

and η = (C,R). As regards the estimation of m (·), any ensemble of trees can be used,

e.g., bagging, boosting, or random forest.

Kernel machines, on the other hand, solve the optimization problem

argmin
m∈H,||m||H≤k

1

n

n∑
i=1

(Yi −m (Xi,Si,η))
2 ,

for the training set, whereH is a reproducing kernel Hilbert space (RKHS). Correspond-

9A partition of a set is a grouping of its elements into subsets that are not empty, such that every
element is included in exactly one subset. For example, P = {[0, 0.5), [0.5, 1]} is a partition of the set
[0, 1].

10Machine learning algorithms split the data into training and test sets. The training set is the
subset of the data used to train a model and the test set is the subset of the data used to test the
trained model.
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ing to each H there exists a unique positive semidefinite symmetric kernel function

K (x1, s1; , x2, s2) with the representation

K (x1, s1; , x2, s2) =
∞∑
j=0

αj, ϕj(x1, s1)ϕj(x2, s2)

for a positive sequence of numbers αj and linearly independent functions ϕj such that

each element m ∈ H has the form

m (Xi,Si,η) =
∞∑
j=0

mjϕj(Xi,Si),
∞∑
j=0

mj

αj

< ∞.

As regards estimation, the kernel machine optimization problem has the following

closed-form solution:

µ̂ (x, s) =
n∑

i=1

(K + λnIk)
−1K(x, s;Xi,Si), (16)

where K is the n× n matrix with ij-th element K(Xi,Si;Xj,Sj).
11

A common choice of the kernel is the squared exponential Kernel (Williams and

Rasmussen, 2006), which has the form

K(x1, x2) = σ2
f × exp

{
−|x1 − x2|2

2l2

}
.

Thus, for the squared exponential kernel we have that

m (Xi,Si,η) =
∞∑
j=0

mjϕj(Xi,Si),

and η =
(
λn, σ

2
f , l

2
)
.

11Notice that equation (16) illustrates why kernel machines are a generalization of ridge.
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